

 Navigation

 	
 index

 	
 next |

 	Guzzle

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

Guzzle Documentation

Getting started

	Welcome to Guzzle

	Installation

	FAQ

The HTTP client

	The Guzzle HTTP client
	Creating a Client

	Creating requests with a client

	Static clients

	Request options

	Sending requests

	Plugins and events

	Using Request objects
	HTTP request messages

	Creating requests with a client

	Query string parameters

	HTTP Message Headers

	Setting the body of a request

	Working with cookies

	Changing where a response is downloaded

	Custom cURL options

	Request options

	Working with errors

	Plugins and events

	Using Response objects
	Response status line

	Response headers

	Response body

	Streaming responses

	Request and response bodies
	Compression

	Decorators

	HTTP redirects
	Redirect history

	Disabling redirects

	Redirects and non-repeatable streams

	URI templates

Plugins

	Plugin system overview

	Creating plugins

	Async plugin

	Backoff retry plugin

	HTTP Cache plugin

	Cookie plugin

	cURL authentication plugin

	History plugin

	Log plugin

	MD5 validator plugin

	Mock plugin

	OAuth plugin

The web service client

	The web service client

	Using a service builder

	Guzzle service descriptions

	Batching

	Resource iterators

	Guzzle iterators

Testing

	Unit Testing Guzzle clients
	PHPUnit integration

	Unit testing remote APIs

	Queueing Mock responses

	node.js web server for integration testing

API Docs

Read the API docs [http://guzzlephp.org/api/index.html]

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Welcome to Guzzle

What is Guzzle?

Guzzle is a PHP HTTP client and framework for building web service clients. Guzzle takes the pain out of sending HTTP
requests and the redundancy out of creating web service clients.

Features at a glance

	All the power of cURL with a simple interface.

	Persistent connections and parallel requests.

	Streams request and response bodies

	Service descriptions for quickly building clients.

	Powered by the Symfony2 EventDispatcher.

	Use all of the code or only specific components.

	Plugins for caching, logging, OAuth, mocks, and more

	Includes a custom node.js webserver to test your clients.

	Service descriptions for defining the inputs and outputs of an API

	Resource iterators for traversing paginated resources

	Batching for sending a large number of requests as efficiently as possible

// Really simple using a static facade
Guzzle\Http\StaticClient::mount();
$response = Guzzle::get('http://guzzlephp.org');

// More control using a client class
$client = new \Guzzle\Http\Client('http://guzzlephp.org');
$request = $client->get('/');
$response = $request->send();

License

Licensed using the MIT license [http://opensource.org/licenses/MIT].

Copyright (c) 2013 Michael Dowling <https://github.com/mtdowling>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Contributing

Guidelines

This is still a work in progress, but there are only a few rules:

	Guzzle follows PSR-0, PSR-1, and PSR-2

	All pull requests must include unit tests to ensure the change works as expected and to prevent future regressions

Reporting a security vulnerability

We want to ensure that Guzzle is a secure HTTP client library for everyone. If you've discovered a security
vulnerability in Guzzle, we appreciate your help in disclosing it to us in a
responsible manner [http://en.wikipedia.org/wiki/Responsible_disclosure].

Publicly disclosing a vulnerability can put the entire community at risk. If you've discovered a security concern,
please email us at security@guzzlephp.org. We'll work with you to make sure that we understand the scope of the issue,
and that we fully address your concern. We consider correspondence sent to security@guzzlephp.org our highest priority,
and work to address any issues that arise as quickly as possible.

After a security vulnerability has been corrected, a security hotfix release will be deployed as soon as possible.

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Installation

Requirements

	PHP 5.3.3+ compiled with the cURL extension

	A recent version of cURL 7.16.2+ compiled with OpenSSL and zlib

Installing Guzzle

Composer

The recommended way to install Guzzle is with Composer [http://getcomposer.org]. Composer is a dependency
management tool for PHP that allows you to declare the dependencies your project needs and installs them into your
project.

Install Composer
curl -sS https://getcomposer.org/installer | php

Add Guzzle as a dependency
php composer.phar require guzzle/guzzle:~3.9

After installing, you need to require Composer's autoloader:

require 'vendor/autoload.php';

You can find out more on how to install Composer, configure autoloading, and other best-practices for defining
dependencies at getcomposer.org [http://getcomposer.org].

Using only specific parts of Guzzle

While you can always just rely on guzzle/guzzle, Guzzle provides several smaller parts of Guzzle as individual
packages available through Composer.

	Package name
	Description

	guzzle/common [https://packagist.org/packages/guzzle/common]
	Provides Guzzle\Common

	guzzle/http [https://packagist.org/packages/guzzle/http]
	Provides Guzzle\Http

	guzzle/parser [https://packagist.org/packages/guzzle/parser]
	Provides Guzzle\Parser

	guzzle/batch [https://packagist.org/packages/guzzle/batch]
	Provides Guzzle\Batch

	guzzle/cache [https://packagist.org/packages/guzzle/cache]
	Provides Guzzle\Cache

	guzzle/inflection [https://packagist.org/packages/guzzle/inflection]
	Provides Guzzle\Inflection

	guzzle/iterator [https://packagist.org/packages/guzzle/iterator]
	Provides Guzzle\Iterator

	guzzle/log [https://packagist.org/packages/guzzle/log]
	Provides Guzzle\Log

	guzzle/plugin [https://packagist.org/packages/guzzle/plugin]
	Provides Guzzle\Plugin (all plugins)

	guzzle/plugin-async [https://packagist.org/packages/guzzle/plugin-async]
	Provides Guzzle\Plugin\Async

	guzzle/plugin-backoff [https://packagist.org/packages/guzzle/plugin-backoff]
	Provides Guzzle\Plugin\BackoffPlugin

	guzzle/plugin-cache [https://packagist.org/packages/guzzle/plugin-cache]
	Provides Guzzle\Plugin\Cache

	guzzle/plugin-cookie [https://packagist.org/packages/guzzle/plugin-cookie]
	Provides Guzzle\Plugin\Cookie

	guzzle/plugin-error-response [https://packagist.org/packages/guzzle/plugin-error-response]
	Provides Guzzle\Plugin\ErrorResponse

	guzzle/plugin-history [https://packagist.org/packages/guzzle/plugin-history]
	Provides Guzzle\Plugin\History

	guzzle/plugin-log [https://packagist.org/packages/guzzle/plugin-log]
	Provides Guzzle\Plugin\Log

	guzzle/plugin-md5 [https://packagist.org/packages/guzzle/plugin-md5]
	Provides Guzzle\Plugin\Md5

	guzzle/plugin-mock [https://packagist.org/packages/guzzle/plugin-mock]
	Provides Guzzle\Plugin\Mock

	guzzle/plugin-oauth [https://packagist.org/packages/guzzle/plugin-oauth]
	Provides Guzzle\Plugin\Oauth

	guzzle/service [https://packagist.org/packages/guzzle/service]
	Provides Guzzle\Service

	guzzle/stream [https://packagist.org/packages/guzzle/stream]
	Provides Guzzle\Stream

Bleeding edge

During your development, you can keep up with the latest changes on the master branch by setting the version
requirement for Guzzle to dev-master.

{
 "require": {
 "guzzle/guzzle": "dev-master"
 }
}

PEAR

Guzzle can be installed through PEAR:

pear channel-discover guzzlephp.org/pear
pear install guzzle/guzzle

You can install a specific version of Guzzle by providing a version number suffix:

pear install guzzle/guzzle-3.9.0

Contributing to Guzzle

In order to contribute, you'll need to checkout the source from GitHub and install Guzzle's dependencies using
Composer:

git clone https://github.com/guzzle/guzzle.git
cd guzzle && curl -s http://getcomposer.org/installer | php && ./composer.phar install --dev

Guzzle is unit tested with PHPUnit. You will need to create your own phpunit.xml file in order to run the unit tests
(or just copy phpunit.xml.dist to phpunit.xml). Run the tests using the vendored PHPUnit binary:

vendor/bin/phpunit

You'll need to install node.js v0.5.0 or newer in order to test the cURL implementation.

Framework integrations

Using Guzzle with Symfony

Bundles are available on GitHub:

	DdeboerGuzzleBundle [https://github.com/ddeboer/GuzzleBundle] for Guzzle 2

	MisdGuzzleBundle [https://github.com/misd-service-development/guzzle-bundle] for Guzzle 3

Using Guzzle with Silex

A Guzzle Silex service provider [https://github.com/guzzle/guzzle-silex-extension] is available on GitHub.

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

FAQ

What should I do if I get this error: Fatal error: Maximum function nesting level of '100' reached, aborting!

You could run into this error if you have the XDebug extension installed and you execute a lot of requests in
callbacks. This error message comes specifically from the XDebug extension. PHP itself does not have a function
nesting limit. Change this setting in your php.ini to increase the limit:

xdebug.max_nesting_level = 1000

[source [http://stackoverflow.com/a/4293870/151504]]

How can I speed up my client?

There are several things you can do to speed up your client:

	Utilize a C based HTTP message parser (e.g. Guzzle\Parser\Message\PeclHttpMessageParser)

	Disable operation validation by setting the command.disable_validation option to true on a command

Why am I getting a 417 error response?

This can occur for a number of reasons, but if you are sending PUT, POST, or PATCH requests with an
Expect: 100-Continue header, a server that does not support this header will return a 417 response. You can work
around this by calling $request->removeHeader('Expect'); after setting the entity body of a request.

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

The Guzzle HTTP client

Guzzle gives PHP developers complete control over HTTP requests while utilizing HTTP/1.1 best practices. Guzzle's HTTP
functionality is a robust framework built on top of the PHP libcurl bindings [http://www.php.net/curl].

The three main parts of the Guzzle HTTP client are:

	Clients
	Guzzle\Http\Client (creates and sends requests, associates a response with a request)

	Requests
	Guzzle\Http\Message\Request (requests with no body),
Guzzle\Http\Message\EntityEnclosingRequest (requests with a body)

	Responses
	Guzzle\Http\Message\Response

Creating a Client

Clients create requests, send requests, and set responses on a request object. When instantiating a client object,
you can pass an optional "base URL" and optional array of configuration options. A base URL is a
URI template that contains the URL of a remote server. When creating requests with a relative
URL, the base URL of a client will be merged into the request's URL.

use Guzzle\Http\Client;

// Create a client and provide a base URL
$client = new Client('https://api.github.com');

$request = $client->get('/user');
$request->setAuth('user', 'pass');
echo $request->getUrl();
// >>> https://api.github.com/user

// You must send a request in order for the transfer to occur
$response = $request->send();

echo $response->getBody();
// >>> {"type":"User", ...

echo $response->getHeader('Content-Length');
// >>> 792

$data = $response->json();
echo $data['type'];
// >>> User

Base URLs

Notice that the URL provided to the client's get() method is relative. Relative URLs will always merge into the
base URL of the client. There are a few rules that control how the URLs are merged.

Tip

Guzzle follows RFC 3986 [http://tools.ietf.org/html/rfc3986#section-5.2] when merging base URLs and
relative URLs.

In the above example, we passed /user to the get() method of the client. This is a relative URL, so it will
merge into the base URL of the client-- resulting in the derived URL of https://api.github.com/users.

/user is a relative URL but uses an absolute path because it contains the leading slash. Absolute paths will
overwrite any existing path of the base URL. If an absolute path is provided (e.g. /path/to/something), then the
path specified in the base URL of the client will be replaced with the absolute path, and the query string provided
by the relative URL will replace the query string of the base URL.

Omitting the leading slash and using relative paths will add to the path of the base URL of the client. So using a
client base URL of https://api.twitter.com/v1.1 and creating a GET request with statuses/user_timeline.json
will result in a URL of https://api.twitter.com/v1.1/statuses/user_timeline.json. If a relative path and a query
string are provided, then the relative path will be appended to the base URL path, and the query string provided will
be merged into the query string of the base URL.

If an absolute URL is provided (e.g. http://httpbin.org/ip), then the request will completely use the absolute URL
as-is without merging in any of the URL parts specified in the base URL.

Configuration options

The second argument of the client's constructor is an array of configuration data. This can include URI template data
or special options that alter the client's behavior:

	request.options
	Associative array of Request options to apply to every
request created by the client.

	redirect.disable
	Disable HTTP redirects for every request created by the client.

	curl.options
	Associative array of cURL options to apply to every request created by the client.
if either the key or value of an entry in the array is a string, Guzzle will
attempt to find a matching defined cURL constant automatically (e.g.
"CURLOPT_PROXY" will be converted to the constant CURLOPT_PROXY).

	ssl.certificate_authority
	Set to true to use the Guzzle bundled SSL certificate bundle (this is used by
default, 'system' to use the bundle on your system, a string pointing to a file to
use a specific certificate file, a string pointing to a directory to use multiple
certificates, or false to disable SSL validation (not recommended).

When using Guzzle inside of a phar file, the bundled SSL certificate will be
extracted to your system's temp folder, and each time a client is created an MD5
check will be performed to ensure the integrity of the certificate.

	command.params
	When using a Guzzle\Service\Client object, this is an associative array of
default options to set on each command created by the client.

Here's an example showing how to set various configuration options, including default headers to send with each request,
default query string parameters to add to each request, a default auth scheme for each request, and a proxy to use for
each request. Values can be injected into the client's base URL using variables from the configuration array.

use Guzzle\Http\Client;

$client = new Client('https://api.twitter.com/{version}', array(
 'version' => 'v1.1',
 'request.options' => array(
 'headers' => array('Foo' => 'Bar'),
 'query' => array('testing' => '123'),
 'auth' => array('username', 'password', 'Basic|Digest|NTLM|Any'),
 'proxy' => 'tcp://localhost:80'
)
));

Setting a custom User-Agent

The default Guzzle User-Agent header is Guzzle/<Guzzle_Version> curl/<curl_version> PHP/<PHP_VERSION>. You can
customize the User-Agent header of a client by calling the setUserAgent() method of a Client object.

// Completely override the default User-Agent
$client->setUserAgent('Test/123');

// Prepend a string to the default User-Agent
$client->setUserAgent('Test/123', true);

Creating requests with a client

A Client object exposes several methods used to create Request objects:

	Create a custom HTTP request: $client->createRequest($method, $uri, array $headers, $body, $options)

	Create a GET request: $client->get($uri, array $headers, $options)

	Create a HEAD request: $client->head($uri, array $headers, $options)

	Create a DELETE request: $client->delete($uri, array $headers, $body, $options)

	Create a POST request: $client->post($uri, array $headers, $postBody, $options)

	Create a PUT request: $client->put($uri, array $headers, $body, $options)

	Create a PATCH request: $client->patch($uri, array $headers, $body, $options)

use Guzzle\Http\Client;

$client = new Client('http://baseurl.com/api/v1');

// Create a GET request using Relative to base URL
// URL of the request: http://baseurl.com/api/v1/path?query=123&value=abc)
$request = $client->get('path?query=123&value=abc');
$response = $request->send();

// Create HEAD request using a relative URL with an absolute path
// URL of the request: http://baseurl.com/path?query=123&value=abc
$request = $client->head('/path?query=123&value=abc');
$response = $request->send();

// Create a DELETE request using an absolute URL
$request = $client->delete('http://www.example.com/path?query=123&value=abc');
$response = $request->send();

// Create a PUT request using the contents of a PHP stream as the body
// Specify custom HTTP headers
$request = $client->put('http://www.example.com/upload', array(
 'X-Header' => 'My Header'
), fopen('http://www.test.com/', 'r'));
$response = $request->send();

// Create a POST request and add the POST files manually
$request = $client->post('http://localhost:8983/solr/update')
 ->addPostFiles(array('file' => '/path/to/documents.xml'));
$response = $request->send();

// Check if a resource supports the DELETE method
$supportsDelete = $client->options('/path')->send()->isMethodAllowed('DELETE');
$response = $request->send();

Client objects create Request objects using a request factory (Guzzle\Http\Message\RequestFactoryInterface).
You can inject a custom request factory into the Client using $client->setRequestFactory(), but you can typically
rely on a Client's default request factory.

Static clients

You can use Guzzle's static client facade to more easily send simple HTTP requests.

// Mount the client so that you can access it at \Guzzle
Guzzle\Http\StaticClient::mount();
$response = Guzzle::get('http://guzzlephp.org');

Each request method of the static client (e.g. get(), post()`, ``put(), etc) accepts an associative array of request
options to apply to the request.

$response = Guzzle::post('http://test.com', array(
 'headers' => array('X-Foo' => 'Bar'),
 'body' => array('Test' => '123'),
 'timeout' => 10
));

Request options

Request options can be specified when creating a request or in the request.options parameter of a client. These
options can control various aspects of a request including: headers to send, query string data, where the response
should be downloaded, proxies, auth, etc.

headers

Associative array of headers to apply to the request. When specified in the $options argument of a client creational
method (e.g. get(), post(), etc), the headers in the $options array will overwrite headers specified in the
$headers array.

$request = $client->get($url, array(), array(
 'headers' => array('X-Foo' => 'Bar')
));

Headers can be specified on a client to add default headers to every request sent by a client.

$client = new Guzzle\Http\Client();

// Set a single header using path syntax
$client->setDefaultOption('headers/X-Foo', 'Bar');

// Set all headers
$client->setDefaultOption('headers', array('X-Foo' => 'Bar'));

Note

In addition to setting request options when creating requests or using the setDefaultOption() method, any
default client request option can be set using a client's config object:

$client->getConfig()->setPath('request.options/headers/X-Foo', 'Bar');

query

Associative array of query string parameters to the request. When specified in the $options argument of a client
creational method, the query string parameters in the $options array will overwrite query string parameters
specified in the $url.

$request = $client->get($url, array(), array(
 'query' => array('abc' => '123')
));

Query string parameters can be specified on a client to add default query string parameters to every request sent by a
client.

$client = new Guzzle\Http\Client();

// Set a single query string parameter using path syntax
$client->setDefaultOption('query/abc', '123');

// Set an array of default query string parameters
$client->setDefaultOption('query', array('abc' => '123'));

body

Sets the body of a request. The value supplied to the body option can be a Guzzle\Http\EntityBodyInterface, string,
fopen resource, or array when sending POST requests. When a body request option is supplied, the option value will
overwrite the $body argument of a client creational method.

auth

Specifies and array of HTTP authorization parameters parameters to use with the request. The array must contain the
username in index [0], the password in index [1], and can optionally contain the authentication type in index [2].
The available authentication types are: "Basic" (default), "Digest", "NTLM", or "Any".

$request = $client->get($url, array(), array(
 'auth' => array('username', 'password', 'Digest')
));

// You can add auth headers to every request of a client
$client->setDefaultOption('auth', array('username', 'password', 'Digest'));

cookies

Specifies an associative array of cookies to add to the request.

allow_redirects

Specifies whether or not the request should follow redirects. Requests will follow redirects by default. Set
allow_redirects to false to disable redirects.

save_to

The save_to option specifies where the body of a response is downloaded. You can pass the path to a file, an fopen
resource, or a Guzzle\Http\EntityBodyInterface object.

See Changing where a response is downloaded for more information on setting the
save_to option.

events

The events option makes it easy to attach listeners to the various events emitted by a request object. The events
options must be an associative array mapping an event name to a Closure or array the contains a Closure and the
priority of the event.

$request = $client->get($url, array(), array(
 'events' => array(
 'request.before_send' => function (\Guzzle\Common\Event $e) {
 echo 'About to send ' . $e['request'];
 }
)
));

// Using the static client:
Guzzle::get($url, array(
 'events' => array(
 'request.before_send' => function (\Guzzle\Common\Event $e) {
 echo 'About to send ' . $e['request'];
 }
)
));

plugins

The plugins options makes it easy to attach an array of plugins to a request.

// Using the static client:
Guzzle::get($url, array(
 'plugins' => array(
 new Guzzle\Plugin\Cache\CachePlugin(),
 new Guzzle\Plugin\Cookie\CookiePlugin()
)
));

exceptions

The exceptions option can be used to disable throwing exceptions for unsuccessful HTTP response codes
(e.g. 404, 500, etc). Set exceptions to false to not throw exceptions.

params

The params options can be used to specify an associative array of data parameters to add to a request. Note that
these are not query string parameters.

timeout / connect_timeout

You can specify the maximum number of seconds to allow for an entire transfer to take place before timing out using
the timeout request option. You can specify the maximum number of seconds to wait while trying to connect using the
connect_timeout request option. Set either of these options to 0 to wait indefinitely.

$request = $client->get('http://www.example.com', array(), array(
 'timeout' => 20,
 'connect_timeout' => 1.5
));

verify

Set to true to enable SSL certificate validation (the default), false to disable SSL certificate validation, or supply
the path to a CA bundle to enable verification using a custom certificate.

cert

The cert option lets you specify a PEM formatted SSL client certificate to use with servers that require one. If the
certificate requires a password, provide an array with the password as the second item.

This would typically be used in conjunction with the ssl_key option.

$request = $client->get('https://www.example.com', array(), array(
 'cert' => '/etc/pki/client_certificate.pem'
)

$request = $client->get('https://www.example.com', array(), array(
 'cert' => array('/etc/pki/client_certificate.pem', 's3cr3tp455w0rd')
)

ssl_key

The ssl_key option lets you specify a file containing your PEM formatted private key, optionally protected by a password.
Note: your password is sensitive, keep the PHP script containing it safe.

This would typically be used in conjunction with the cert option.

$request = $client->get('https://www.example.com', array(), array(
 'ssl_key' => '/etc/pki/private_key.pem'
)

$request = $client->get('https://www.example.com', array(), array(
 'ssl_key' => array('/etc/pki/private_key.pem', 's3cr3tp455w0rd')
)

proxy

The proxy option is used to specify an HTTP proxy (e.g. http://username:password@192.168.16.1:10).

debug

The debug option is used to show verbose cURL output for a transfer.

stream

When using a static client, you can set the stream option to true to return a GuzzleStreamStream object that can
be used to pull data from a stream as needed (rather than have cURL download the entire contents of a response to a
stream all at once).

$stream = Guzzle::get('http://guzzlephp.org', array('stream' => true));
while (!$stream->feof()) {
 echo $stream->readLine();
}

Sending requests

Requests can be sent by calling the send() method of a Request object, but you can also send requests using the
send() method of a Client.

$request = $client->get('http://www.amazon.com');
$response = $client->send($request);

Sending requests in parallel

The Client's send() method accept a single Guzzle\Http\Message\RequestInterface object or an array of
RequestInterface objects. When an array is specified, the requests will be sent in parallel.

Sending many HTTP requests serially (one at a time) can cause an unnecessary delay in a script's execution. Each
request must complete before a subsequent request can be sent. By sending requests in parallel, a pool of HTTP
requests can complete at the speed of the slowest request in the pool, significantly reducing the amount of time
needed to execute multiple HTTP requests. Guzzle provides a wrapper for the curl_multi functions in PHP.

Here's an example of sending three requests in parallel using a client object:

use Guzzle\Common\Exception\MultiTransferException;

try {
 $responses = $client->send(array(
 $client->get('http://www.google.com/'),
 $client->head('http://www.google.com/'),
 $client->get('https://www.github.com/')
));
} catch (MultiTransferException $e) {

 echo "The following exceptions were encountered:\n";
 foreach ($e as $exception) {
 echo $exception->getMessage() . "\n";
 }

 echo "The following requests failed:\n";
 foreach ($e->getFailedRequests() as $request) {
 echo $request . "\n\n";
 }

 echo "The following requests succeeded:\n";
 foreach ($e->getSuccessfulRequests() as $request) {
 echo $request . "\n\n";
 }
}

If the requests succeed, an array of Guzzle\Http\Message\Response objects are returned. A single request failure
will not cause the entire pool of requests to fail. Any exceptions thrown while transferring a pool of requests will
be aggregated into a Guzzle\Common\Exception\MultiTransferException exception.

Plugins and events

Guzzle provides easy to use request plugins that add behavior to requests based on signal slot event notifications
powered by the
Symfony2 Event Dispatcher component [http://symfony.com/doc/2.0/components/event_dispatcher/introduction.html]. Any
event listener or subscriber attached to a Client object will automatically be attached to each request created by the
client.

Using the same cookie session for each request

Attach a Guzzle\Plugin\Cookie\CookiePlugin to a client which will in turn add support for cookies to every request
created by a client, and each request will use the same cookie session:

use Guzzle\Plugin\Cookie\CookiePlugin;
use Guzzle\Plugin\Cookie\CookieJar\ArrayCookieJar;

// Create a new cookie plugin
$cookiePlugin = new CookiePlugin(new ArrayCookieJar());

// Add the cookie plugin to the client
$client->addSubscriber($cookiePlugin);

Events emitted from a client

A Guzzle\Http\Client object emits the following events:

	Event name
	Description
	Event data

	client.create_request
	Called when a client creates a request
	
	client: The client

	request: The created request

use Guzzle\Common\Event;
use Guzzle\Http\Client;

$client = new Client();

// Add a listener that will echo out requests as they are created
$client->getEventDispatcher()->addListener('client.create_request', function (Event $e) {
 echo 'Client object: ' . spl_object_hash($e['client']) . "\n";
 echo "Request object: {$e['request']}\n";
});

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Using Request objects

HTTP request messages

Request objects are all about building an HTTP message. Each part of an HTTP request message can be set individually
using methods on the request object or set in bulk using the setUrl() method. Here's the format of an HTTP request
with each part of the request referencing the method used to change it:

PUT(a) /path(b)?query=123(c) HTTP/1.1(d)
X-Header(e): header
Content-Length(e): 4

data(f)

	
	Method

	The request method can only be set when instantiating a request

	
	Path

	$request->setPath('/path');

	
	Query

	$request->getQuery()->set('query', '123');

	
	Protocol version

	$request->setProtocolVersion('1.1');

	
	Header

	$request->setHeader('X-Header', 'header');

	
	Entity Body

	$request->setBody('data'); // Only available with PUT, POST, PATCH, DELETE

Creating requests with a client

Client objects are responsible for creating HTTP request objects.

GET requests

GET requests [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] are the most common form of HTTP
requests. When you visit a website in your browser, the HTML of the website is downloaded using a GET request. GET
requests are idempotent requests that are typically used to download content (an entity) identified by a request URL.

use Guzzle\Http\Client;

$client = new Client();

// Create a request that has a query string and an X-Foo header
$request = $client->get('http://www.amazon.com?a=1', array('X-Foo' => 'Bar'));

// Send the request and get the response
$response = $request->send();

You can change where the body of a response is downloaded on any request using the
$request->setResponseBody(string|EntityBodyInterface|resource) method of a request. You can also set the save_to
option of a request:

// Send the response body to a file
$request = $client->get('http://test.com', array(), array('save_to' => '/path/to/file'));

// Send the response body to an fopen resource
$request = $client->get('http://test.com', array(), array('save_to' => fopen('/path/to/file', 'w')));

HEAD requests

HEAD requests [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.4] work exactly like GET requests except
that they do not actually download the response body (entity) of the response message. HEAD requests are useful for
retrieving meta information about an entity identified by a Request-URI.

$client = new Guzzle\Http\Client();
$request = $client->head('http://www.amazon.com');
$response = $request->send();
echo $response->getContentLength();
// >>> Will output the Content-Length header value

DELETE requests

A DELETE method [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] requests that the origin server
delete the resource identified by the Request-URI.

$client = new Guzzle\Http\Client();
$request = $client->delete('http://example.com');
$response = $request->send();

POST requests

While POST requests [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] can be used for a number of
reasons, POST requests are often used when submitting HTML form data to a website. POST requests can include an entity
body in the HTTP request.

POST requests in Guzzle are sent with an application/x-www-form-urlencoded Content-Type header if POST fields are
present but no files are being sent in the POST. If files are specified in the POST request, then the Content-Type
header will become multipart/form-data.

The post() method of a client object accepts four arguments: the URL, optional headers, post fields, and an array of
request options. To send files in the POST request, prepend the @ symbol to the array value (just like you would if
you were using the PHP curl_setopt function).

Here's how to create a multipart/form-data POST request containing files and fields:

$request = $client->post('http://httpbin.org/post', array(), array(
 'custom_field' => 'my custom value',
 'file_field' => '@/path/to/file.xml'
));

$response = $request->send();

Note

Remember to always sanitize user input when sending POST requests:

// Prevent users from accessing sensitive files by sanitizing input
$_POST = array('firstname' => '@/etc/passwd');
$request = $client->post('http://www.example.com', array(), array (
 'firstname' => str_replace('@', '', $_POST['firstname'])
));

You can alternatively build up the contents of a POST request.

$request = $client->post('http://httpbin.org/post')
 ->setPostField('custom_field', 'my custom value')
 ->addPostFile('file', '/path/to/file.xml');

$response = $request->send();

Raw POST data

POST requests can also contain raw POST data that is not related to HTML forms.

$request = $client->post('http://httpbin.org/post', array(), 'this is the body');
$response = $request->send();

You can set the body of POST request using the setBody() method of the
Guzzle\Http\Message\EntityEnclosingRequest object. This method accepts a string, a resource returned from
fopen, or a Guzzle\Http\EntityBodyInterface object.

$request = $client->post('http://httpbin.org/post');
// Set the body of the POST to stream the contents of /path/to/large_body.txt
$request->setBody(fopen('/path/to/large_body.txt', 'r'));
$response = $request->send();

PUT requests

The PUT method [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6] requests that the enclosed entity be
stored under the supplied Request-URI. PUT requests are similar to POST requests in that they both can send an entity
body in the request message.

The body of a PUT request (any any Guzzle\Http\Message\EntityEnclosingRequestInterface object) is always stored as
a Guzzle\Http\Message\EntityBodyInterface object. This allows a great deal of flexibility when sending data to a
remote server. For example, you can stream the contents of a stream returned by fopen, stream the contents of a
callback function, or simply send a string of data.

$request = $client->put('http://httpbin.org/put', array(), 'this is the body');
$response = $request->send();

Just like with POST, PATH, and DELETE requests, you can set the body of a PUT request using the setBody() method.

$request = $client->put('http://httpbin.org/put');
$request->setBody(fopen('/path/to/large_body.txt', 'r'));
$response = $request->send();

PATCH requests

PATCH requests [http://tools.ietf.org/html/rfc5789] are used to modify a resource.

$request = $client->patch('http://httpbin.org', array(), 'this is the body');
$response = $request->send();

OPTIONS requests

The OPTIONS method [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.2] represents a request for
information about the communication options available on the request/response chain identified by the Request-URI.

$request = $client->options('http://httpbin.org');
$response = $request->send();

// Check if the PUT method is supported by this resource
var_export($response->isMethodAllows('PUT'));

Custom requests

You can create custom HTTP requests that use non-standard HTTP methods using the createRequest() method of a
client object.

$request = $client->createRequest('COPY', 'http://example.com/foo', array(
 'Destination' => 'http://example.com/bar',
 'Overwrite' => 'T'
));
$response = $request->send();

Query string parameters

Query string parameters of a request are owned by a request's Guzzle\Http\Query object that is accessible by
calling $request->getQuery(). The Query class extends from Guzzle\Common\Collection and allows you to set one
or more query string parameters as key value pairs. You can set a parameter on a Query object using the
set($key, $value) method or access the query string object like an associative array. Any previously specified
value for a key will be overwritten when using set(). Use add($key, $value) to add a value to query string
object, and in the event of a collision with an existing value at a specific key, the value will be converted to an
array that contains all of the previously set values.

$request = new Guzzle\Http\Message\Request('GET', 'http://www.example.com?foo=bar&abc=123');

$query = $request->getQuery();
echo "{$query}\n";
// >>> foo=bar&abc=123

$query->remove('abc');
echo "{$query}\n";
// >>> foo=bar

$query->set('foo', 'baz');
echo "{$query}\n";
// >>> foo=baz

$query->add('foo', 'bar');
echo "{$query}\n";
// >>> foo%5B0%5D=baz&foo%5B1%5D=bar

Whoah! What happened there? When foo=bar was added to the existing foo=baz query string parameter, the
aggregator associated with the Query object was used to help convert multi-value query string parameters into a string.
Let's disable URL-encoding to better see what's happening.

$query->useUrlEncoding(false);
echo "{$query}\n";
// >>> foo[0]=baz&foo[1]=bar

Note

URL encoding can be disabled by passing false, enabled by passing true, set to use RFC 1738 by passing
Query::FORM_URLENCODED (internally uses PHP's urlencode function), or set to RFC 3986 by passing
Query::RFC_3986 (this is the default and internally uses PHP's rawurlencode function).

As you can see, the multiple values were converted into query string parameters following the default PHP convention of
adding numerically indexed square bracket suffixes to each key (foo[0]=baz&foo[1]=bar). The strategy used to convert
multi-value parameters into a string can be customized using the setAggregator() method of the Query class. Guzzle
ships with the following query string aggregators by default:

	Guzzle\Http\QueryAggregator\PhpAggregator: Aggregates using PHP style brackets (e.g. foo[0]=baz&foo[1]=bar)

	Guzzle\Http\QueryAggregator\DuplicateAggregator: Performs no aggregation and allows for key value pairs to be
repeated in a URL (e.g. foo=baz&foo=bar)

	Guzzle\Http\QueryAggregator\CommaAggregator: Aggregates using commas (e.g. foo=baz,bar)

HTTP Message Headers

HTTP message headers are case insensitive, multiple occurrences of any header can be present in an HTTP message
(whether it's valid or not), and some servers require specific casing of particular headers. Because of this, request
and response headers are stored in Guzzle\Http\Message\Header objects. The Header object can be cast as a string,
counted, or iterated to retrieve each value from the header. Casting a Header object to a string will return all of
the header values concatenated together using a glue string (typically ", ").

A request (and response) object have several methods that allow you to retrieve and modify headers.

	getHeaders(): Get all of the headers of a message as a Guzzle\Http\Message\Header\HeaderCollection object.

	getHeader($header): Get a specific header from a message. If the header exists, you'll get a
Guzzle\Http\Message\Header object. If the header does not exist, this methods returns null.

	hasHeader($header): Returns true or false based on if the message has a particular header.

	setHeader($header, $value): Set a header value and overwrite any previously set value for this header.

	addHeader($header, $value): Add a header with a particular name. If a previous value was already set by the same,
then the header will contain multiple values.

	removeHeader($header): Remove a header by name from the message.

$request = new Request('GET', 'http://httpbin.com/cookies');
// addHeader will set and append to any existing header values
$request->addHeader('Foo', 'bar');
$request->addHeader('foo', 'baz');
// setHeader overwrites any existing values
$request->setHeader('Test', '123');

// Request headers can be cast as a string
echo $request->getHeader('Foo');
// >>> bar, baz
echo $request->getHeader('Test');
// >>> 123

// You can count the number of headers of a particular case insensitive name
echo count($request->getHeader('foO'));
// >>> 2

// You can iterate over Header objects
foreach ($request->getHeader('foo') as $header) {
 echo $header . "\n";
}

// You can get all of the request headers as a Guzzle\Http\Message\Header\HeaderCollection object
$headers = $request->getHeaders();

// Missing headers return NULL
var_export($request->getHeader('Missing'));
// >>> null

// You can see all of the different variations of a header by calling raw() on the Header
var_export($request->getHeader('foo')->raw());

Setting the body of a request

Requests that can send a body (e.g. PUT, POST, DELETE, PATCH) are instances of
Guzzle\Http\Message\EntityEnclosingRequestInterface. Entity enclosing requests contain several methods that allow
you to specify the body to send with a request.

Use the setBody() method of a request to set the body that will be sent with a request. This method accepts a
string, a resource returned by fopen(), an array, or an instance of Guzzle\Http\EntityBodyInterface. The body
will then be streamed from the underlying EntityBodyInterface object owned by the request. When setting the body
of the request, you can optionally specify a Content-Type header and whether or not to force the request to use
chunked Transfer-Encoding.

$request = $client->put('/user.json');
$request->setBody('{"foo":"baz"}', 'application/json');

Content-Type header

Guzzle will automatically add a Content-Type header to a request if the Content-Type can be guessed based on the file
extension of the payload being sent or the file extension present in the path of a request.

$request = $client->put('/user.json', array(), '{"foo":"bar"}');
// The Content-Type was guessed based on the path of the request
echo $request->getHeader('Content-Type');
// >>> application/json

$request = $client->put('/user.json');
$request->setBody(fopen('/tmp/user_data.json', 'r'));
// The Content-Type was guessed based on the path of the entity body
echo $request->getHeader('Content-Type');
// >>> application/json

Transfer-Encoding: chunked header

When sending HTTP requests that contain a payload, you must let the remote server know how to determine when the entire
message has been sent. This usually is done by supplying a Content-Length header that tells the origin server the
size of the body that is to be sent. In some cases, the size of the payload being sent in a request cannot be known
before initiating the transfer. In these cases (when using HTTP/1.1), you can use the Transfer-Encoding: chunked
header.

If the Content-Length cannot be determined (i.e. using a PHP http:// stream), then Guzzle will automatically add
the Transfer-Encoding: chunked header to the request.

$request = $client->put('/user.json');
$request->setBody(fopen('http://httpbin.org/get', 'r'));

// The Content-Length could not be determined
echo $request->getHeader('Transfer-Encoding');
// >>> chunked

See Request and response bodies for more information on entity bodies.

Expect: 100-Continue header

The Expect: 100-Continue header is used to help a client prevent sending a large payload to a server that will
reject the request. This allows clients to fail fast rather than waste bandwidth sending an erroneous payload. Guzzle
will automatically add the Expect: 100-Continue header to a request when the size of the payload exceeds 1MB or if
the body of the request is not seekable (this helps to prevent errors when a non-seekable body request is redirected).

Note

If you find that your larger requests are taking too long to complete, you should first check if the
Expect: 100-Continue header is being sent with the request. Some servers do not respond well to this header,
which causes cURL to sleep for 1 second [http://curl.haxx.se/mail/lib-2010-01/0182.html].

POST fields and files

Any entity enclosing request can send POST style fields and files. This includes POST, PUT, PATCH, and DELETE requests.
Any request that has set POST fields or files will use cURL's POST message functionality.

$request = $client->post('/post');
// Set an overwrite any previously specified value
$request->setPostField('foo', 'bar');
// Append a value to any existing values
$request->getPostFields()->add('foo', 'baz');
// Remove a POST field by name
$request->removePostField('fizz');

// Add a file to upload (forces multipart/form-data)
$request->addPostFile('my_file', '/path/to/file', 'plain/text');
// Remove a POST file by POST key name
$request->removePostFile('my_other_file');

Tip

Adding a large number of POST fields to a POST request is faster if you use the addPostFields() method so that
you can add and process multiple fields with a single call. Adding multiple POST files is also faster using
addPostFiles().

Working with cookies

Cookies can be modified and retrieved from a request using the following methods:

$request->addCookie($name, $value);
$request->removeCookie($name);
$value = $request->getCookie($name);
$valueArray = $request->getCookies();

Use the cookie plugin if you need to reuse cookies between requests.

Changing where a response is downloaded

When a request is sent, the body of the response will be stored in a PHP temp stream by default. You can change the
location in which the response will be downloaded using $request->setResponseBody($body) or the save_to request
option. This can be useful for downloading the contents of a URL to a specific file.

Here's an example of using request options:

$request = $this->client->get('http://example.com/large.mov', array(), array(
 'save_to' => '/tmp/large_file.mov'
));
$request->send();
var_export(file_exists('/tmp/large_file.mov'));
// >>> true

Here's an example of using setResponseBody():

$body = fopen('/tmp/large_file.mov', 'w');
$request = $this->client->get('http://example.com/large.mov');
$request->setResponseBody($body);

// You can more easily specify the name of a file to save the contents
// of the response to by passing a string to ``setResponseBody()``.

$request = $this->client->get('http://example.com/large.mov');
$request->setResponseBody('/tmp/large_file.mov');

Custom cURL options

Most of the functionality implemented in the libcurl bindings has been simplified and abstracted by Guzzle. Developers
who need access to cURL specific functionality [http://www.php.net/curl_setopt] can still add cURL handle
specific behavior to Guzzle HTTP requests by modifying the cURL options collection of a request:

$request->getCurlOptions()->set(CURLOPT_LOW_SPEED_LIMIT, 200);

Other special options that can be set in the curl.options array include:

	debug
	Adds verbose cURL output to a temp stream owned by the cURL handle object

	progress
	Instructs cURL to emit events when IO events occur. This allows you to be
notified when bytes are transferred over the wire by subscribing to a request's
curl.callback.read, curl.callback.write, and curl.callback.progress
events.

Request options

Requests options can be specified when creating a request or in the request.options parameter of a client. These
options can control various aspects of a request including: headers to send, query string data, where the response
should be downloaded, proxies, auth, etc.

$request = $client->get($url, $headers, array('proxy' => 'http://proxy.com'));

See Request options for more information.

Working with errors

HTTP errors

Requests that receive a 4xx or 5xx response will throw a Guzzle\Http\Exception\BadResponseException. More
specifically, 4xx errors throw a Guzzle\Http\Exception\ClientErrorResponseException, and 5xx errors throw a
Guzzle\Http\Exception\ServerErrorResponseException. You can catch the specific exceptions or just catch the
BadResponseException to deal with either type of error. Here's an example of catching a generic BadResponseException:

try {
 $response = $client->get('/not_found.xml')->send();
} catch (Guzzle\Http\Exception\BadResponseException $e) {
 echo 'Uh oh! ' . $e->getMessage();
 echo 'HTTP request URL: ' . $e->getRequest()->getUrl() . "\n";
 echo 'HTTP request: ' . $e->getRequest() . "\n";
 echo 'HTTP response status: ' . $e->getResponse()->getStatusCode() . "\n";
 echo 'HTTP response: ' . $e->getResponse() . "\n";
}

Throwing an exception when a 4xx or 5xx response is encountered is the default behavior of Guzzle requests. This
behavior can be overridden by adding an event listener with a higher priority than -255 that stops event propagation.
You can subscribe to request.error to receive notifications any time an unsuccessful response is received.

You can change the response that will be associated with the request by calling setResponse() on the
$event['request'] object passed into your listener, or by changing the $event['response'] value of the
Guzzle\Common\Event object that is passed to your listener. Transparently changing the response associated with a
request by modifying the event allows you to retry failed requests without complicating the code that uses the client.
This might be useful for sending requests to a web service that has expiring auth tokens. When a response shows that
your token has expired, you can get a new token, retry the request with the new token, and return the successful
response to the user.

Here's an example of retrying a request using updated authorization credentials when a 401 response is received,
overriding the response of the original request with the new response, and still allowing the default exception
behavior to be called when other non-200 response status codes are encountered:

// Add custom error handling to any request created by this client
$client->getEventDispatcher()->addListener('request.error', function(Event $event) {

 if ($event['response']->getStatusCode() == 401) {

 $newRequest = $event['request']->clone();
 $newRequest->setHeader('X-Auth-Header', MyApplication::getNewAuthToken());
 $newResponse = $newRequest->send();

 // Set the response object of the request without firing more events
 $event['response'] = $newResponse;

 // You can also change the response and fire the normal chain of
 // events by calling $event['request']->setResponse($newResponse);

 // Stop other events from firing when you override 401 responses
 $event->stopPropagation();
 }

});

cURL errors

Connection problems and cURL specific errors can also occur when transferring requests using Guzzle. When Guzzle
encounters cURL specific errors while transferring a single request, a Guzzle\Http\Exception\CurlException is
thrown with an informative error message and access to the cURL error message.

A Guzzle\Http\Exception\MultiTransferException exception is thrown when a cURL specific error occurs while
transferring multiple requests in parallel. You can then iterate over all of the exceptions encountered during the
transfer.

Plugins and events

Guzzle request objects expose various events that allow you to hook in custom logic. A request object owns a
Symfony\Component\EventDispatcher\EventDispatcher object that can be accessed by calling
$request->getEventDispatcher(). You can use the event dispatcher to add listeners (a simple callback function) or
event subscribers (classes that listen to specific events of a dispatcher). You can add event subscribers to a request
directly by just calling $request->addSubscriber($mySubscriber);.

Events emitted from a request

A Guzzle\Http\Message\Request and Guzzle\Http\Message\EntityEnclosingRequest object emit the following events:

	Event name
	Description
	Event data

	request.before_send
	About to send request
	
	request: Request to be sent

	request.sent
	Sent the request
	
	request: Request that was sent

	response: Received response

	request.complete
	Completed a full HTTP transaction
	
	request: Request that was sent

	response: Received response

	request.success
	Completed a successful request
	
	request: Request that was sent

	response: Received response

	request.error
	Completed an unsuccessful request
	
	request: Request that was sent

	response: Received response

	request.exception
	An unsuccessful response was
received.
	
	request: Request

	response: Received response

	exception: BadResponseException

	request.receive.status_line
	Received the start of a response
	
	line: Full response start line

	status_code: Status code

	reason_phrase: Reason phrase

	previous_response: (e.g. redirect)

	curl.callback.progress
	cURL progress event (only dispatched when
emit_io is set on a request's curl
options)
	
	handle: CurlHandle

	download_size: Total download size

	downloaded: Bytes downloaded

	upload_size: Total upload bytes

	uploaded: Bytes uploaded

	curl.callback.write
	cURL event called when data is written to
an outgoing stream
	
	request: Request

	write: Data being written

	curl.callback.read
	cURL event called when data is written to
an incoming stream
	
	request: Request

	read: Data being read

Creating a request event listener

Here's an example that listens to the request.complete event of a request and prints the request and response.

use Guzzle\Common\Event;

$request = $client->get('http://www.google.com');

// Echo out the response that was received
$request->getEventDispatcher()->addListener('request.complete', function (Event $e) {
 echo $e['request'] . "\n\n";
 echo $e['response'];
});

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Using Response objects

Sending a request will return a Guzzle\Http\Message\Response object. You can view the raw HTTP response message by
casting the Response object to a string. Casting the response to a string will return the entity body of the response
as a string too, so this might be an expensive operation if the entity body is stored in a file or network stream. If
you only want to see the response headers, you can call getRawHeaders().

Response status line

The different parts of a response's status line [http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6.1]
(the first line of the response HTTP message) are easily retrievable.

$response = $client->get('http://www.amazon.com')->send();

echo $response->getStatusCode(); // >>> 200
echo $response->getReasonPhrase(); // >>> OK
echo $response->getProtocol(); // >>> HTTP
echo $response->getProtocolVersion(); // >>> 1.1

You can determine the type of the response using several helper methods:

$response->isSuccessful(); // true
$response->isInformational();
$response->isRedirect();
$response->isClientError();
$response->isServerError();

Response headers

The Response object contains helper methods for retrieving common response headers. These helper methods normalize the
variations of HTTP response headers.

$response->getCacheControl();
$response->getContentType();
$response->getContentLength();
$response->getContentEncoding();
$response->getContentMd5();
$response->getEtag();
// etc... There are methods for every known response header

You can interact with the Response headers using the same exact methods used to interact with Request headers. See
HTTP Message Headers for more information.

echo $response->getHeader('Content-Type');
echo $response->getHeader('Content-Length');
echo $response->getHeaders()['Content-Type']; // PHP 5.4

Response body

The entity body object of a response can be retrieved by calling $response->getBody(). The response EntityBody can
be cast to a string, or you can pass true to this method to retrieve the body as a string.

$request = $client->get('http://www.amazon.com');
$response = $request->send();
echo $response->getBody();

See Request and response bodies for more information on entity bodies.

JSON Responses

You can easily parse and use a JSON response as an array using the json() method of a response. This method will
always return an array if the response is valid JSON or if the response body is empty. You will get an exception if you
call this method and the response is not valid JSON.

$data = $response->json();
echo gettype($data);
// >>> array

XML Responses

You can easily parse and use a XML response as SimpleXMLElement object using the xml() method of a response. This
method will always return a SimpleXMLElement object if the response is valid XML or if the response body is empty. You
will get an exception if you call this method and the response is not valid XML.

$xml = $response->xml();
echo $xml->foo;
// >>> Bar!

Streaming responses

Some web services provide streaming APIs that allow a client to keep a HTTP request open for an extended period of
time while polling and reading. Guzzle provides a simple way to convert HTTP request messages into
Guzzle\Stream\Stream objects so that you can send the initial headers of a request, read the response headers, and
pull in the response body manually as needed.

Here's an example using the Twitter Streaming API to track the keyword "bieber":

use Guzzle\Http\Client;
use Guzzle\Stream\PhpStreamRequestFactory;

$client = new Client('https://stream.twitter.com/1');

$request = $client->post('statuses/filter.json', null, array(
 'track' => 'bieber'
));

$request->setAuth('myusername', 'mypassword');

$factory = new PhpStreamRequestFactory();
$stream = $factory->fromRequest($request);

// Read until the stream is closed
while (!$stream->feof()) {
 // Read a line from the stream
 $line = $stream->readLine();
 // JSON decode the line of data
 $data = json_decode($line, true);
}

You can use the stream request option when using a static client to more easily create a streaming response.

$stream = Guzzle::get('http://guzzlephp.org', array('stream' => true));
while (!$stream->feof()) {
 echo $stream->readLine();
}

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Request and response bodies

Entity body [http://www.w3.org/Protocols/rfc2616/rfc2616-sec7.html] is the term used for the body of an HTTP
message. The entity body of requests and responses is inherently a
PHP stream [http://php.net/manual/en/book.stream.php] in Guzzle. The body of the request can be either a string or
a PHP stream which are converted into a Guzzle\Http\EntityBody object using its factory method. When using a
string, the entity body is stored in a temp PHP stream [http://www.php.net/manual/en/wrappers.php.php]. The use of
temp PHP streams helps to protect your application from running out of memory when sending or receiving large entity
bodies in your messages. When more than 2MB of data is stored in a temp stream, it automatically stores the data on
disk rather than in memory.

EntityBody objects provide a great deal of functionality: compression, decompression, calculate the Content-MD5,
calculate the Content-Length (when the resource is repeatable), guessing the Content-Type, and more. Guzzle doesn't
need to load an entire entity body into a string when sending or retrieving data; entity bodies are streamed when
being uploaded and downloaded.

Here's an example of gzip compressing a text file then sending the file to a URL:

use Guzzle\Http\EntityBody;

$body = EntityBody::factory(fopen('/path/to/file.txt', 'r+'));
echo $body->read(1024);
$body->seek(0, SEEK_END);
$body->write('foo');
echo $body->ftell();
$body->rewind();

// Send a request using the body
$response = $client->put('http://localhost:8080/uploads', null, $body)->send();

The body of the request can be specified in the Client::put() or Client::post() method, or, you can specify
the body of the request by calling the setBody() method of any
Guzzle\Http\Message\EntityEnclosingRequestInterface object.

Compression

You can compress the contents of an EntityBody object using the compress() method. The compress method accepts a
filter that must match to one of the supported
PHP stream filters [http://www.php.net/manual/en/filters.compression.php] on your system (e.g. zlib.deflate,
bzip2.compress, etc). Compressing an entity body will stream the entire entity body through a stream compression
filter into a temporary PHP stream. You can uncompress an entity body using the uncompress() method and passing
the PHP stream filter to use when decompressing the stream (e.g. zlib.inflate).

use Guzzle\Http\EntityBody;

$body = EntityBody::factory(fopen('/tmp/test.txt', 'r+'));
echo $body->getSize();
// >>> 1048576

// Compress using the default zlib.deflate filter
$body->compress();
echo $body->getSize();
// >>> 314572

// Decompress the stream
$body->uncompress();
echo $body->getSize();
// >>> 1048576

Decorators

Guzzle provides several EntityBody decorators that can be used to add functionality to an EntityBody at runtime.

IoEmittingEntityBody

This decorator will emit events when data is read from a stream or written to a stream. Add an event subscriber to the
entity body's body.read or body.write methods to receive notifications when data data is transferred.

use Guzzle\Common\Event;
use Guzzle\Http\EntityBody;
use Guzzle\Http\IoEmittingEntityBody;

$original = EntityBody::factory(fopen('/tmp/test.txt', 'r+'));
$body = new IoEmittingEntityBody($original);

// Listen for read events
$body->getEventDispatcher()->addListener('body.read', function (Event $e) {
 // Grab data from the event
 $entityBody = $e['body'];
 // Amount of data retrieved from the body
 $lengthOfData = $e['length'];
 // The actual data that was read
 $data = $e['read'];
});

// Listen for write events
$body->getEventDispatcher()->addListener('body.write', function (Event $e) {
 // Grab data from the event
 $entityBody = $e['body'];
 // The data that was written
 $data = $e['write'];
 // The actual amount of data that was written
 $data = $e['read'];
});

ReadLimitEntityBody

The ReadLimitEntityBody decorator can be used to transfer a subset or slice of an existing EntityBody object. This can
be useful for breaking a large file into smaller pieces to be sent in chunks (e.g. Amazon S3's multipart upload API).

use Guzzle\Http\EntityBody;
use Guzzle\Http\ReadLimitEntityBody;

$original = EntityBody::factory(fopen('/tmp/test.txt', 'r+'));
echo $original->getSize();
// >>> 1048576

// Limit the size of the body to 1024 bytes and start reading from byte 2048
$body = new ReadLimitEntityBody($original, 1024, 2048);
echo $body->getSize();
// >>> 1024
echo $body->ftell();
// >>> 0

CachingEntityBody

The CachingEntityBody decorator is used to allow seeking over previously read bytes on non-seekable read streams. This
can be useful when transferring a non-seekable entity body fails due to needing to rewind the stream (for example,
resulting from a redirect). Data that is read from the remote stream will be buffered in a PHP temp stream so that
previously read bytes are cached first in memory, then on disk.

use Guzzle\Http\EntityBody;
use Guzzle\Http\CachingEntityBody;

$original = EntityBody::factory(fopen('http://www.google.com', 'r'));
$body = new CachingEntityBody($original);

$body->read(1024);
echo $body->ftell();
// >>> 1024

$body->seek(0);
echo $body->ftell();
// >>> 0

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

HTTP redirects

By default, Guzzle will automatically follow redirects using the non-RFC compliant implementation used by most web
browsers. This means that redirects for POST requests are followed by a GET request. You can force RFC compliance by
enabling the strict mode on a request's parameter object:

// Set per request
$request = $client->post();
$request->getParams()->set('redirect.strict', true);

// You can set globally on a client so all requests use strict redirects
$client->getConfig()->set('request.params', array(
 'redirect.strict' => true
));

By default, Guzzle will redirect up to 5 times before throwing a Guzzle\Http\Exception\TooManyRedirectsException.
You can raise or lower this value using the redirect.max parameter of a request object:

$request->getParams()->set('redirect.max', 2);

Redirect history

You can get the number of redirects of a request using the resulting response object's getRedirectCount() method.
Similar to cURL's effective_url property, Guzzle provides the effective URL, or the last redirect URL that returned
the request, in a response's getEffectiveUrl() method.

When testing or debugging, it is often useful to see a history of redirects for a particular request. This can be
achieved using the HistoryPlugin.

$request = $client->get('/');
$history = new Guzzle\Plugin\History\HistoryPlugin();
$request->addSubscriber($history);
$response = $request->send();

// Get the last redirect URL or the URL of the request that received
// this response
echo $response->getEffectiveUrl();

// Get the number of redirects
echo $response->getRedirectCount();

// Iterate over each sent request and response
foreach ($history->getAll() as $transaction) {
 // Request object
 echo $transaction['request']->getUrl() . "\n";
 // Response object
 echo $transaction['response']->getEffectiveUrl() . "\n";
}

// Or, simply cast the HistoryPlugin to a string to view each request and response
echo $history;

Disabling redirects

You can disable redirects on a client by passing a configuration option in the client's constructor:

$client = new Client(null, array('redirect.disable' => true));

You can also disable redirects per request:

$request = $client->get($url, array(), array('allow_redirects' => false));

Redirects and non-repeatable streams

If you are redirected when sending data from a non-repeatable stream and some of the data has been read off of the
stream, then you will get a Guzzle\Http\Exception\CouldNotRewindStreamException. You can get around this error by
adding a custom rewind method to the entity body object being sent in the request.

$request = $client->post(
 'http://httpbin.com/redirect/2',
 null,
 fopen('http://httpbin.com/get', 'r')
);

// Add a custom function that can be used to rewind the stream
// (reopen in this example)
$request->getBody()->setRewindFunction(function ($body) {
 $body->setStream(fopen('http://httpbin.com/get', 'r'));
 return true;
);

$response = $client->send();

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

URI templates

The $uri passed to one of the client's request creational methods or the base URL of a client can utilize URI
templates. Guzzle supports the entire URI templates RFC [http://tools.ietf.org/html/rfc6570]. URI templates add a
special syntax to URIs that replace template place holders with user defined variables.

Every request created by a Guzzle HTTP client passes through a URI template so that URI template expressions are
automatically expanded:

$client = new Guzzle\Http\Client('https://example.com/', array('a' => 'hi'));
$request = $client->get('/{a}');

Because of URI template expansion, the URL of the above request will become https://example.com/hi. Notice that
the template was expanded using configuration variables of the client. You can pass in custom URI template variables
by passing the URI of your request as an array where the first index of the array is the URI template and the second
index of the array are template variables that are merged into the client's configuration variables.

$request = $client->get(array('/test{?a,b}', array('b' => 'there')));

The URL for this request will become https://test.com?a=hi&b=there. URI templates aren't limited to just simple
variable replacements; URI templates can provide an enormous amount of flexibility when creating request URIs.

$request = $client->get(array('http://example.com{+path}{/segments*}{?query,data*}', array(
 'path' => '/foo/bar',
 'segments' => array('one', 'two'),
 'query' => 'test',
 'data' => array(
 'more' => 'value'
)
)));

The resulting URL would become http://example.com/foo/bar/one/two?query=test&more=value.

By default, URI template expressions are enclosed in an opening and closing brace (e.g. {var}). If you are working
with a web service that actually uses braces (e.g. Solr), then you can specify a custom regular expression to use to
match URI template expressions.

$client->getUriTemplate()->setRegex('/\<\$(.+)\>/');
$client->get('/<$a>');

You can learn about all of the different features of URI templates by reading the
URI templates RFC [http://tools.ietf.org/html/rfc6570].

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Plugin system overview

The workflow of sending a request and parsing a response is driven by Guzzle's event system, which is powered by the
Symfony2 Event Dispatcher component [http://symfony.com/doc/current/components/event_dispatcher/introduction.html].

Any object in Guzzle that emits events will implement the Guzzle\Common\HasEventDispatcher interface. You can add
event subscribers directly to these objects using the addSubscriber() method, or you can grab the
Symfony\Component\EventDispatcher\EventDispatcher object owned by the object using getEventDispatcher() and
add a listener or event subscriber.

Adding event subscribers to clients

Any event subscriber or event listener attached to the EventDispatcher of a Guzzle\Http\Client or
Guzzle\Service\Client object will automatically be attached to all request objects created by the client. This
allows you to attach, for example, a HistoryPlugin to a client object, and from that point on, every request sent
through that client will utilize the HistoryPlugin.

use Guzzle\Plugin\History\HistoryPlugin;
use Guzzle\Service\Client;

$client = new Client();

// Create a history plugin and attach it to the client
$history = new HistoryPlugin();
$client->addSubscriber($history);

// Create and send a request. This request will also utilize the HistoryPlugin
$client->get('http://httpbin.org')->send();

// Echo out the last sent request by the client
echo $history->getLastRequest();

Tip

Create event subscribers, or plugins, to implement reusable logic that can be
shared across clients. Event subscribers are also easier to test than anonymous functions.

Pre-Built plugins

Guzzle provides easy to use request plugins that add behavior to requests based on signal slot event notifications
powered by the Symfony2 Event Dispatcher component.

	Async plugin

	Backoff retry plugin

	HTTP Cache plugin

	Cookie plugin

	cURL authentication plugin

	History plugin

	Log plugin

	MD5 validator plugin

	Mock plugin

	OAuth plugin

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Creating plugins

Guzzle is extremely extensible because of the behavioral modifications that can be added to requests, clients, and
commands using an event system. Before and after the majority of actions are taken in the library, an event is emitted
with the name of the event and context surrounding the event. Observers can subscribe to a subject and modify the
subject based on the events received. Guzzle's event system utilizes the Symfony2 EventDispatcher and is the backbone
of its plugin architecture.

Overview

Plugins must implement the Symfony\Component\EventDispatcher\EventSubscriberInterface interface. The
EventSubscriberInterface requires that your class implements a static method, getSubscribedEvents(), that
returns an associative array mapping events to methods on the object. See the
Symfony2 documentation [http://symfony.com/doc/2.0/book/internals.html#the-event-dispatcher] for more information.

Plugins can be attached to any subject, or object in Guzzle that implements that
Guzzle\Common\HasDispatcherInterface.

Subscribing to a subject

You can subscribe an instantiated observer to an event by calling addSubscriber on a subject.

$testPlugin = new TestPlugin();
$client->addSubscriber($testPlugin);

You can also subscribe to only specific events using a closure:

$client->getEventDispatcher()->addListener('request.create', function(Event $event) {
 echo $event->getName();
 echo $event['request'];
});

Guzzle\Common\Event objects are passed to notified functions. The Event object has a getName() method which
return the name of the emitted event and may contain contextual information that can be accessed like an array.

Knowing what events to listen to

Any class that implements the Guzzle\Common\HasDispatcherInterface must implement a static method,
getAllEvents(), that returns an array of the events that are emitted from the object. You can browse the source
to see each event, or you can call the static method directly in your code to get a list of available events.

Event hooks

	Events emitted from a client

	Events emitted from a Service Client

	Events emitted from a request

	Guzzle\Http\Curl\CurlMulti:

	Events emitted from a service builder

Examples of the event system

Simple Echo plugin

This simple plugin prints a string containing the request that is about to be sent by listening to the
request.before_send event:

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class EchoPlugin implements EventSubscriberInterface
{
 public static function getSubscribedEvents()
 {
 return array('request.before_send' => 'onBeforeSend');
 }

 public function onBeforeSend(Guzzle\Common\Event $event)
 {
 echo 'About to send a request: ' . $event['request'] . "\n";
 }
}

$client = new Guzzle\Service\Client('http://www.test.com/');

// Create the plugin and add it as an event subscriber
$plugin = new EchoPlugin();
$client->addSubscriber($plugin);

// Send a request and notice that the request is printed to the screen
$client->get('/')->send();

Running the above code will print a string containing the HTTP request that is about to be sent.

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Async plugin

The AsyncPlugin allows you to send requests that do not wait on a response. This is handled through cURL by utilizing
the progress event. When a request has sent all of its data to the remote server, Guzzle adds a 1ms timeout on the
request and instructs cURL to not download the body of the response. The async plugin then catches the exception and
adds a mock response to the request, along with an X-Guzzle-Async header to let you know that the response was not
fully downloaded.

use Guzzle\Http\Client;
use Guzzle\Plugin\Async\AsyncPlugin;

$client = new Client('http://www.example.com');
$client->addSubscriber(new AsyncPlugin());
$response = $client->get()->send();

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Backoff retry plugin

The Guzzle\Plugin\Backoff\BackoffPlugin automatically retries failed HTTP requests using custom backoff strategies:

use Guzzle\Http\Client;
use Guzzle\Plugin\Backoff\BackoffPlugin;

$client = new Client('http://www.test.com/');
// Use a static factory method to get a backoff plugin using the exponential backoff strategy
$backoffPlugin = BackoffPlugin::getExponentialBackoff();

// Add the backoff plugin to the client object
$client->addSubscriber($backoffPlugin);

The BackoffPlugin's constructor accepts a Guzzle\Plugin\Backoff\BackoffStrategyInterface object that is used to
determine when a retry should be issued and how long to delay between retries. The above code example shows how to
attach a BackoffPlugin to a client that is pre-configured to retry failed 500 and 503 responses using truncated
exponential backoff (emulating the behavior of Guzzle 2's ExponentialBackoffPlugin).

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

HTTP Cache plugin

Guzzle can leverage HTTP's caching specifications using the Guzzle\Plugin\Cache\CachePlugin. The CachePlugin
provides a private transparent proxy cache that caches HTTP responses. The caching logic, based on
RFC 2616 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html], uses HTTP headers to control caching behavior,
cache lifetime, and supports Vary, ETag, and Last-Modified based revalidation:

use Guzzle\Http\Client;
use Doctrine\Common\Cache\FilesystemCache;
use Guzzle\Cache\DoctrineCacheAdapter;
use Guzzle\Plugin\Cache\CachePlugin;
use Guzzle\Plugin\Cache\DefaultCacheStorage;

$client = new Client('http://www.test.com/');

$cachePlugin = new CachePlugin(array(
 'storage' => new DefaultCacheStorage(
 new DoctrineCacheAdapter(
 new FilesystemCache('/path/to/cache/files')
)
)
));

// Add the cache plugin to the client object
$client->addSubscriber($cachePlugin);
$client->get('http://www.wikipedia.org/')->send();

// The next request will revalidate against the origin server to see if it
// has been modified. If a 304 response is received the response will be
// served from cache
$client->get('http://www.wikipedia.org/')->send();

The cache plugin intercepts GET and HEAD requests before they are actually transferred to the origin server. The cache
plugin then generates a hash key based on the request method and URL, and checks to see if a response exists in the cache. If
a response exists in the cache, the cache adapter then checks to make sure that the caching rules associated with the response
satisfy the request, and ensures that response still fresh. If the response is acceptable for the request any required
revalidation, then the cached response is served instead of contacting the origin server.

Vary

Cache keys are derived from a request method and a request URL. Multiple responses can map to the same cache key and
stored in Guzzle's underlying cache storage object. You should use the Vary HTTP header to tell the cache storage
object that the cache response must have been cached for a request that matches the headers specified in the Vary header
of the request. This allows you to have specific cache entries for the same request URL but variations in a request's
headers determine which cache entry is served. Please see the http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44
for more information.

Cache options

There are several options you can add to requests or clients to modify the behavior of the cache plugin.

Override cache TTL

You can override the number of seconds a cacheable response is stored in the cache by setting the
cache.override_ttl parameter on the params object of a request:

// If the response to the request is cacheable, then the response will be cached for 100 seconds
$request->getParams()->set('cache.override_ttl', 100);

If a response doesn't specify any freshness policy, it will be kept in cache for 3600 seconds by default.

Custom caching decision

If the service you are interacting with does not return caching headers or returns responses that are normally
something that would not be cached, you can set a custom can_cache object on the constructor of the CachePlugin
and provide a Guzzle\Plugin\Cache\CanCacheInterface object. You can use the
Guzzle\Plugin\Cache\CallbackCanCacheStrategy to easily make a caching decision based on an HTTP request and
response.

Revalidation options

You can change the revalidation behavior of a request using the cache.revalidate parameter. Setting this
parameter to never will ensure that a revalidation request is never sent, and the response is always served from
the origin server. Setting this parameter to skip will never revalidate and uses the response stored in the cache.

Normalizing requests for caching

Use the cache.key_filter parameter if you wish to strip certain query string parameters from your
request before creating a unique hash for the request. This parameter can be useful if your requests have query
string values that cause each request URL to be unique (thus preventing a cache hit). The cache.key_filter
format is simply a comma separated list of query string values to remove from the URL when creating a cache key.
For example, here we are saying that the a and q query string variables should be ignored when generating a
cache key for the request:

$request->getParams()->set('cache.key_filter', 'a, q');

Other options

There are many other options available to the CachePlugin that can meet almost any caching requirement, including
custom revalidation implementations, custom cache key generators, custom caching decision strategies, and custom
cache storage objects. Take a look the constructor of Guzzle\Plugin\Cache\CachePlugin for more information.

Setting Client-wide cache settings

You can specify cache settings for every request created by a client by adding cache settings to the configuration
options of a client.

$client = new Guzzle\Http\Client('http://www.test.com', array(
 'request.params' => array(
 'cache.override_ttl' => 3600,
 'params.cache.revalidate' => 'never'
)
));

echo $client->get('/')->getParams()->get('cache.override_ttl');
// >>> 3600

echo $client->get('/')->getParams()->get('cache.revalidate');
// >>> never

Cache revalidation

If the cache plugin determines that a response to a GET request needs revalidation, a conditional GET is transferred
to the origin server. If the origin server returns a 304 response, then a response containing the merged headers of
the cached response with the new response and the entity body of the cached response is returned. Custom revalidation
strategies can be injected into a CachePlugin if needed.

Cache adapters

Guzzle doesn't try to reinvent the wheel when it comes to caching or logging. Plenty of other frameworks have
excellent solutions in place that you are probably already using in your applications. Guzzle uses adapters for
caching and logging. The cache plugin requires a cache adapter so that is can store responses in a cache. Guzzle
currently supports cache adapters for Doctrine 2.0 [http://www.doctrine-project.org/] and the
Zend Framework [http://framework.zend.com].

Doctrine cache adapter

use Doctrine\Common\Cache\ArrayCache;
use Guzzle\Cache\DoctrineCacheAdapter;
use Guzzle\Plugin\Cache\CachePlugin;

$backend = new ArrayCache();
$adapter = new DoctrineCacheAdapter($backend);
$cache = new CachePlugin($adapter);

Zend Framework cache adapter

use Guzzle\Cache\ZendCacheAdapter;
use Zend\Cache\Backend\TestBackend;

$backend = new TestBackend();
$adapter = new ZendCacheAdapter($backend);
$cache = new CachePlugin($adapter);

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Cookie plugin

Some web services require a Cookie in order to maintain a session. The Guzzle\Plugin\Cookie\CookiePlugin will add
cookies to requests and parse cookies from responses using a CookieJar object:

use Guzzle\Http\Client;
use Guzzle\Plugin\Cookie\CookiePlugin;
use Guzzle\Plugin\Cookie\CookieJar\ArrayCookieJar;

$cookiePlugin = new CookiePlugin(new ArrayCookieJar());

// Add the cookie plugin to a client
$client = new Client('http://www.test.com/');
$client->addSubscriber($cookiePlugin);

// Send the request with no cookies and parse the returned cookies
$client->get('http://www.yahoo.com/')->send();

// Send the request again, noticing that cookies are being sent
$request = $client->get('http://www.yahoo.com/');
$request->send();

echo $request;

You can disable cookies per-request by setting the cookies.disable value to true on a request's params object.

$request->getParams()->set('cookies.disable', true);

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

cURL authentication plugin

Warning

The CurlAuthPlugin is deprecated. You should use the auth parameter of a client to add authorization headers to
every request created by a client.

$client->setDefaultOption('auth', array('username', 'password', 'Basic|Digest|NTLM|Any'));

If your web service client requires basic authorization, then you can use the CurlAuthPlugin to easily add an
Authorization header to each request sent by the client.

use Guzzle\Http\Client;
use Guzzle\Plugin\CurlAuth\CurlAuthPlugin;

$client = new Client('http://www.test.com/');

// Add the auth plugin to the client object
$authPlugin = new CurlAuthPlugin('username', 'password');
$client->addSubscriber($authPlugin);

$response = $client->get('projects/1/people')->send();
$xml = new SimpleXMLElement($response->getBody(true));
foreach ($xml->person as $person) {
 echo $person->email . "\n";
}

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

History plugin

The history plugin tracks all of the requests and responses sent through a request or client. This plugin can be
useful for crawling or unit testing. By default, the history plugin stores up to 10 requests and responses.

use Guzzle\Http\Client;
use Guzzle\Plugin\History\HistoryPlugin;

$client = new Client('http://www.test.com/');

// Add the history plugin to the client object
$history = new HistoryPlugin();
$history->setLimit(5);
$client->addSubscriber($history);

$client->get('http://www.yahoo.com/')->send();

echo $history->getLastRequest();
echo $history->getLastResponse();
echo count($history);

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Log plugin

Use the Guzzle\Plugin\Log\LogPlugin to view all data sent over the wire, including entity bodies and redirects.

use Guzzle\Http\Client;
use Guzzle\Log\Zf1LogAdapter;
use Guzzle\Plugin\Log\LogPlugin;
use Guzzle\Log\MessageFormatter;

$client = new Client('http://www.test.com/');

$adapter = new Zf1LogAdapter(
 new \Zend_Log(new \Zend_Log_Writer_Stream('php://output'))
);
$logPlugin = new LogPlugin($adapter, MessageFormatter::DEBUG_FORMAT);

// Attach the plugin to the client, which will in turn be attached to all
// requests generated by the client
$client->addSubscriber($logPlugin);

$response = $client->get('http://google.com')->send();

The code sample above wraps a Zend_Log object using a Guzzle\Log\Zf1LogAdapter. After attaching the plugin to
the client, all data sent over the wire will be logged to stdout.

The first argument of the LogPlugin's constructor accepts a Guzzle\Log\LogAdapterInterface object. This object is
an adapter that allows you to use the logging capabilities of your favorite log implementation. The second argument of
the constructor accepts a Guzzle\Log\MessageFormatter or a log messaged format string. The format string uses
variable substitution and allows you to define the log data that is important to your application. The different
variables that can be injected are as follows:

	Variable
	Substitution

	{request}
	Full HTTP request message

	{response}
	Full HTTP response message

	{ts}
	Timestamp

	{host}
	Host of the request

	{method}
	Method of the request

	{url}
	URL of the request

	{host}
	Host of the request

	{protocol}
	Request protocol

	{version}
	Protocol version

	{resource}
	Resource of the request (path + query + fragment)

	{port}
	Port of the request

	{hostname}
	Hostname of the machine that sent the request

	{code}
	Status code of the response (if available)

	{phrase}
	Reason phrase of the response (if available)

	{curl_error}
	Curl error message (if available)

	{curl_code}
	Curl error code (if available)

	{curl_stderr}
	Curl standard error (if available)

	{connect_time}
	Time in seconds it took to establish the connection (if available)

	{total_time}
	Total transaction time in seconds for last transfer (if available)

	{req_header_*}
	Replace * with the lowercased name of a request header to add to the message

	{res_header_*}
	Replace * with the lowercased name of a response header to add to the message

	{req_body}
	Request body

	{res_body}
	Response body

The LogPlugin has a helper method that can be used when debugging that will output the full HTTP request and
response of a transaction:

$client->addSubscriber(LogPlugin::getDebugPlugin());

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

MD5 validator plugin

Entity bodies can sometimes be modified over the wire due to a faulty TCP transport or misbehaving proxy. If an HTTP
response contains a Content-MD5 header, then a MD5 hash of the entity body of a response can be compared against the
Content-MD5 header of the response to determine if the response was delivered intact. The
Guzzle\Plugin\Md5\Md5ValidatorPlugin will throw an UnexpectedValueException if the calculated MD5 hash does
not match the Content-MD5 header value:

use Guzzle\Http\Client;
use Guzzle\Plugin\Md5\Md5ValidatorPlugin;

$client = new Client('http://www.test.com/');

$md5Plugin = new Md5ValidatorPlugin();

// Add the md5 plugin to the client object
$client->addSubscriber($md5Plugin);

$request = $client->get('http://www.yahoo.com/');
$request->send();

Calculating the MD5 hash of a large entity body or an entity body that was transferred using a Content-Encoding is an
expensive operation. When working in high performance applications, you might consider skipping the MD5 hash
validation for entity bodies bigger than a certain size or Content-Encoded entity bodies
(see Guzzle\Plugin\Md5\Md5ValidatorPlugin for more information).

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Mock plugin

The mock plugin is useful for testing Guzzle clients. The mock plugin allows you to queue an array of responses that
will satisfy requests sent from a client by consuming the request queue in FIFO order.

use Guzzle\Http\Client;
use Guzzle\Plugin\Mock\MockPlugin;
use Guzzle\Http\Message\Response;

$client = new Client('http://www.test.com/');

$mock = new MockPlugin();
$mock->addResponse(new Response(200))
 ->addResponse(new Response(404));

// Add the mock plugin to the client object
$client->addSubscriber($mock);

// The following request will receive a 200 response from the plugin
$client->get('http://www.example.com/')->send();

// The following request will receive a 404 response from the plugin
$client->get('http://www.test.com/')->send();

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

OAuth plugin

Guzzle ships with an OAuth 1.0 plugin that can sign requests using a consumer key, consumer secret, OAuth token,
and OAuth secret. Here's an example showing how to send an authenticated request to the Twitter REST API:

use Guzzle\Http\Client;
use Guzzle\Plugin\Oauth\OauthPlugin;

$client = new Client('http://api.twitter.com/1');
$oauth = new OauthPlugin(array(
 'consumer_key' => 'my_key',
 'consumer_secret' => 'my_secret',
 'token' => 'my_token',
 'token_secret' => 'my_token_secret'
));
$client->addSubscriber($oauth);

$response = $client->get('statuses/public_timeline.json')->send();

If you need to use a custom signing method, you can pass a signature_method configuration option in the
constructor of the OAuth plugin. The signature_method option must be a callable variable that accepts a string to
sign and signing key and returns a signed string.

Note

You can omit the token and token_secret options to use two-legged OAuth.

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

The web service client

The Guzzle\Service namespace contains various abstractions that help to make it easier to interact with a web
service API, including commands, service descriptions, and resource iterators.

In this chapter, we'll build a simple Twitter API client [https://dev.twitter.com/docs/api/1.1].

Creating a client

A class that extends from Guzzle\Service\Client or implements Guzzle\Service\ClientInterface must implement a
factory() method in order to be used with a service builder.

Factory method

You can use the factory() method of a client directly if you do not need a service builder.

use mtdowling\TwitterClient;

// Create a client and pass an array of configuration data
$twitter = TwitterClient::factory(array(
 'consumer_key' => '****',
 'consumer_secret' => '****',
 'token' => '****',
 'token_secret' => '****'
));

Note

If you'd like to follow along, here's how to get your Twitter API credentials:

	Visit https://dev.twitter.com/apps

	Click on an application that you've created

	Click on the "OAuth tool" tab

	Copy all of the settings under "OAuth Settings"

Implementing a factory method

Creating a client and its factory method is pretty simple. You just need to implement Guzzle\Service\ClientInterface
or extend from Guzzle\Service\Client.

namespace mtdowling;

use Guzzle\Common\Collection;
use Guzzle\Plugin\Oauth\OauthPlugin;
use Guzzle\Service\Client;
use Guzzle\Service\Description\ServiceDescription;

/**
 * A simple Twitter API client
 */
class TwitterClient extends Client
{
 public static function factory($config = array())
 {
 // Provide a hash of default client configuration options
 $default = array('base_url' => 'https://api.twitter.com/1.1');

 // The following values are required when creating the client
 $required = array(
 'base_url',
 'consumer_key',
 'consumer_secret',
 'token',
 'token_secret'
);

 // Merge in default settings and validate the config
 $config = Collection::fromConfig($config, $default, $required);

 // Create a new Twitter client
 $client = new self($config->get('base_url'), $config);

 // Ensure that the OauthPlugin is attached to the client
 $client->addSubscriber(new OauthPlugin($config->toArray()));

 return $client;
 }
}

Service Builder

A service builder is used to easily create web service clients, provides a simple configuration driven approach to
creating clients, and allows you to share configuration settings across multiple clients. You can find out more about
Guzzle's service builder in Using a service builder.

use Guzzle\Service\Builder\ServiceBuilder;

// Create a service builder and provide client configuration data
$builder = ServiceBuilder::factory('/path/to/client_config.json');

// Get the client from the service builder by name
$twitter = $builder->get('twitter');

The above example assumes you have JSON data similar to the following stored in "/path/to/client_config.json":

{
 "services": {
 "twitter": {
 "class": "mtdowling\\TwitterClient",
 "params": {
 "consumer_key": "****",
 "consumer_secret": "****",
 "token": "****",
 "token_secret": "****"
 }
 }
 }
}

Note

A service builder becomes much more valuable when using multiple web service clients in a single application or
if you need to utilize the same client with varying configuration settings (e.g. multiple accounts).

Commands

Commands are a concept in Guzzle that helps to hide the underlying implementation of an API by providing an easy to use
parameter driven object for each action of an API. A command is responsible for accepting an array of configuration
parameters, serializing an HTTP request, and parsing an HTTP response. Following the
command pattern [http://en.wikipedia.org/wiki/Command_pattern], commands in Guzzle offer a greater level of
flexibility when implementing and utilizing a web service client.

Executing commands

You must explicitly execute a command after creating a command using the getCommand() method. A command has an
execute() method that may be called, or you can use the execute() method of a client object and pass in the
command object. Calling either of these execute methods will return the result value of the command. The result value is
the result of parsing the HTTP response with the process() method.

// Get a command from the client and pass an array of parameters
$command = $twitter->getCommand('getMentions', array(
 'count' => 5
));

// Other parameters can be set on the command after it is created
$command['trim_user'] = false;

// Execute the command using the command object.
// The result value contains an array of JSON data from the response
$result = $command->execute();

// You can retrieve the result of the command later too
$result = $command->getResult().

Command object also contains methods that allow you to inspect the HTTP request and response that was utilized with
the command.

$request = $command->getRequest();
$response = $command->getResponse();

Note

The format and notation used to retrieve commands from a client can be customized by injecting a custom command
factory, Guzzle\Service\Command\Factory\FactoryInterface, on the client using $client->setCommandFactory().

Executing with magic methods

When using method missing magic methods with a command, the command will be executed right away and the result of the
command is returned.

$jsonData = $twitter->getMentions(array(
 'count' => 5,
 'trim_user' => true
));

Creating commands

Commands are created using either the getCommand() method of a client or a magic missing method of a client. Using
the getCommand() method allows you to create a command without executing it, allowing for customization of the
command or the request serialized by the command.

When a client attempts to create a command, it uses the client's Guzzle\Service\Command\Factory\FactoryInterface.
By default, Guzzle will utilize a command factory that first looks for a concrete class for a particular command
(concrete commands) followed by a command defined by a service description (operation commands). We'll learn more about
concrete commands and operation commands later in this chapter.

// Get a command from the twitter client.
$command = $twitter->getCommand('getMentions');
$result = $command->execute();

Unless you've skipped ahead, running the above code will throw an exception.

PHP Fatal error: Uncaught exception 'GuzzleCommonExceptionInvalidArgumentException' with message
'Command was not found matching getMentions'

This exception was thrown because the "getMentions" command has not yet been implemented. Let's implement one now.

Concrete commands

Commands can be created in one of two ways: create a concrete command class that extends
Guzzle\Service\Command\AbstractCommand or
create an OperationCommand based on a service description. The recommended
approach is to use a service description to define your web service, but you can use concrete commands when custom
logic must be implemented for marshaling or unmarshaling a HTTP message.

Commands are the method in which you abstract away the underlying format of the requests that need to be sent to take
action on a web service. Commands in Guzzle are meant to be built by executing a series of setter methods on a command
object. Commands are only validated right before they are executed. A Guzzle\Service\Client object is responsible
for executing commands. Commands created for your web service must implement
Guzzle\Service\Command\CommandInterface, but it's easier to extend the Guzzle\Service\Command\AbstractCommand
class, implement the build() method, and optionally implement the process() method.

Serializing requests

The build() method of a command is responsible for using the arguments of the command to build and serialize a
HTTP request and set the request on the $request property of the command object. This step is usually taken care of
for you when using a service description driven command that uses the default
Guzzle\Service\Command\OperationCommand. You may wish to implement the process method yourself when you aren't
using a service description or need to implement more complex request serialization.

The following example shows how to implement the getMentions
Twitter API [https://dev.twitter.com/docs/api/1.1/get/statuses/mentions_timeline] method using a concrete command.

namespace mtdowling\Twitter\Command;

use Guzzle\Service\Command\AbstractCommand;

class GetMentions extends AbstractCommand
{
 protected function build()
 {
 // Create the request property of the command
 $this->request = $this->client->get('statuses/mentions_timeline.json');

 // Grab the query object of the request because we will use it for
 // serializing command parameters on the request
 $query = $this->request->getQuery();

 if ($this['count']) {
 $query->set('count', $this['count']);
 }

 if ($this['since_id']) {
 $query->set('since_id', $this['since_id']);
 }

 if ($this['max_id']) {
 $query->set('max_id', $this['max_id']);
 }

 if ($this['trim_user'] !== null) {
 $query->set('trim_user', $this['trim_user'] ? 'true' : 'false');
 }

 if ($this['contributor_details'] !== null) {
 $query->set('contributor_details', $this['contributor_details'] ? 'true' : 'false');
 }

 if ($this['include_entities'] !== null) {
 $query->set('include_entities', $this['include_entities'] ? 'true' : 'false');
 }
 }
}

By default, a client will attempt to find concrete command classes under the Command namespace of a client. First
the client will attempt to find an exact match for the name of the command to the name of the command class. If an
exact match is not found, the client will calculate a class name using inflection. This is calculated based on the
folder hierarchy of a command and converting the CamelCased named commands into snake_case. Here are some examples on
how the command names are calculated:

	Foo\Command\JarJar -> jar_jar

	Foo\Command\Test -> test

	Foo\Command\People\GetCurrentPerson -> people.get_current_person

Notice how any sub-namespace beneath Command is converted from \ to . (a period). CamelCasing is converted
to lowercased snake_casing (e.g. JarJar == jar_jar).

Parsing responses

The process() method of a command is responsible for converting an HTTP response into something more useful. For
example, a service description operation that has specified a model object in the responseClass attribute of the
operation will set a Guzzle\Service\Resource\Model object as the result of the command. This behavior can be
completely modified as needed-- even if you are using operations and responseClass models. Simply implement a custom
process() method that sets the $this->result class property to whatever you choose. You can reuse parts of the
default Guzzle response parsing functionality or get inspiration from existing code by using
Guzzle\Service\Command\OperationResponseParser and Guzzle\Service\Command\DefaultResponseParser classes.

If you do not implement a custom process() method and are not using a service description, then Guzzle will attempt
to guess how a response should be processed based on the Content-Type header of the response. Because the Twitter API
sets a Content-Type: application/json header on this response, we do not need to implement any custom response
parsing.

Operation commands

Operation commands are commands in which the serialization of an HTTP request and the parsing of an HTTP response are
driven by a Guzzle service description. Because request serialization, validation, and response parsing are
described using a DSL, creating operation commands is a much faster process than writing concrete commands.

Creating operation commands for our Twitter client can remove a great deal of redundancy from the previous concrete
command, and allows for a deeper runtime introspection of the API. Here's an example service description we can use to
create the Twitter API client:

{
 "name": "Twitter",
 "apiVersion": "1.1",
 "baseUrl": "https://api.twitter.com/1.1",
 "description": "Twitter REST API client",
 "operations": {
 "GetMentions": {
 "httpMethod": "GET",
 "uri": "statuses/mentions_timeline.json",
 "summary": "Returns the 20 most recent mentions for the authenticating user.",
 "responseClass": "GetMentionsOutput",
 "parameters": {
 "count": {
 "description": "Specifies the number of tweets to try and retrieve",
 "type": "integer",
 "location": "query"
 },
 "since_id": {
 "description": "Returns results with an ID greater than the specified ID",
 "type": "integer",
 "location": "query"
 },
 "max_id": {
 "description": "Returns results with an ID less than or equal to the specified ID.",
 "type": "integer",
 "location": "query"
 },
 "trim_user": {
 "description": "Limits the amount of data returned for each user",
 "type": "boolean",
 "location": "query"
 },
 "contributor_details": {
 "description": "Adds more data to contributor elements",
 "type": "boolean",
 "location": "query"
 },
 "include_entities": {
 "description": "The entities node will be disincluded when set to false.",
 "type": "boolean",
 "location": "query"
 }
 }
 }
 },
 "models": {
 "GetMentionsOutput": {
 "type": "object",
 "additionalProperties": {
 "location": "json"
 }
 }
 }
}

If you're lazy, you can define the API in a less descriptive manner using additionalParameters.
additionalParameters define the serialization and validation rules of parameters that are not explicitly defined
in a service description.

{
 "name": "Twitter",
 "apiVersion": "1.1",
 "baseUrl": "https://api.twitter.com/1.1",
 "description": "Twitter REST API client",
 "operations": {
 "GetMentions": {
 "httpMethod": "GET",
 "uri": "statuses/mentions_timeline.json",
 "summary": "Returns the 20 most recent mentions for the authenticating user.",
 "responseClass": "GetMentionsOutput",
 "additionalParameters": {
 "location": "query"
 }
 }
 },
 "models": {
 "GetMentionsOutput": {
 "type": "object",
 "additionalProperties": {
 "location": "json"
 }
 }
 }
}

You should attach the service description to the client at the end of the client's factory method:

// ...
class TwitterClient extends Client
{
 public static function factory($config = array())
 {
 // ... same code as before ...

 // Set the service description
 $client->setDescription(ServiceDescription::factory('path/to/twitter.json'));

 return $client;
 }
}

The client can now use operations defined in the service description instead of requiring you to create concrete
command classes. Feel free to delete the concrete command class we created earlier.

$jsonData = $twitter->getMentions(array(
 'count' => 5,
 'trim_user' => true
));

Executing commands in parallel

Much like HTTP requests, Guzzle allows you to send multiple commands in parallel. You can send commands in parallel by
passing an array of command objects to a client's execute() method. The client will serialize each request and
send them all in parallel. If an error is encountered during the transfer, then a
Guzzle\Service\Exception\CommandTransferException is thrown, which allows you to retrieve a list of commands that
succeeded and a list of commands that failed.

use Guzzle\Service\Exception\CommandTransferException;

$commands = array();
$commands[] = $twitter->getCommand('getMentions');
$commands[] = $twitter->getCommand('otherCommandName');
// etc...

try {
 $result = $client->execute($commands);
 foreach ($result as $command) {
 echo $command->getName() . ': ' . $command->getResponse()->getStatusCode() . "\n";
 }
} catch (CommandTransferException $e) {
 // Get an array of the commands that succeeded
 foreach ($e->getSuccessfulCommands() as $command) {
 echo $command->getName() . " succeeded\n";
 }
 // Get an array of the commands that failed
 foreach ($e->getFailedCommands() as $command) {
 echo $command->getName() . " failed\n";
 }
}

Note

All commands executed from a client using an array must originate from the same client.

Special command options

Guzzle exposes several options that help to control how commands are validated, serialized, and parsed.
Command options can be specified when creating a command or in the command.params parameter in the
Guzzle\Service\Client.

	command.request_options
	Option used to add Request options to the request created by a
command

	command.hidden_params
	An array of the names of parameters ignored by the additionalParameters parameter schema

	command.disable_validation
	Set to true to disable JSON schema validation of the command's input parameters

	command.response_processing
	Determines how the default response parser will parse the command. One of "raw" no parsing,
"model" (the default method used to parse commands using response models defined in service
descriptions)

	command.headers
	(deprecated) Option used to specify custom headers. Use command.request_options instead

	command.on_complete
	(deprecated) Option used to add an onComplete method to a command. Use
command.after_send event instead

	command.response_body
	(deprecated) Option used to change the entity body used to store a response.
Use command.request_options instead

Advanced client configuration

Default command parameters

When creating a client object, you can specify default command parameters to pass into all commands. Any key value pair
present in the command.params settings of a client will be added as default parameters to any command created
by the client.

$client = new Guzzle\Service\Client(array(
 'command.params' => array(
 'default_1' => 'foo',
 'another' => 'bar'
)
));

Magic methods

Client objects will, by default, attempt to create and execute commands when a missing method is invoked on a client.
This powerful concept applies to both concrete commands and operation commands powered by a service description. This
makes it appear to the end user that you have defined actual methods on a client object, when in fact, the methods are
invoked using PHP's magic __call method.

The __call method uses the getCommand() method of a client, which uses the client's internal
Guzzle\Service\Command\Factory\FactoryInterface object. The default command factory allows you to instantiate
operations defined in a client's service description. The method in which a client determines which command to
execute is defined as follows:

	The client will first try to find a literal match for an operation in the service description.

	If the literal match is not found, the client will try to uppercase the first character of the operation and find
the match again.

	If a match is still not found, the command factory will inflect the method name from CamelCase to snake_case and
attempt to find a matching command.

	If a command still does not match, an exception is thrown.

// Use the magic method
$result = $twitter->getMentions();

// This is exactly the same as:
$result = $twitter->getCommand('getMentions')->execute();

You can disable magic methods on a client by passing false to the enableMagicMethod() method.

Custom command factory

A client by default uses the Guzzle\Service\Command\Factory\CompositeFactory which allows multiple command
factories to attempt to create a command by a certain name. The default CompositeFactory uses a ConcreteClassFactory
and a ServiceDescriptionFactory if a service description is specified on a client. You can specify a custom
command factory if your client requires custom command creation logic using the setCommandFactory() method of
a client.

Custom resource Iterator factory

Resource iterators can be retrieved from a client using the getIterator($name) method of a client. This method uses
a client's internal Guzzle\Service\Resource\ResourceIteratorFactoryInterface object. A client by default uses a
Guzzle\Service\Resource\ResourceIteratorClassFactory to attempt to find concrete classes that implement resource
iterators. The default factory will first look for matching iterators in the Iterator subdirectory of the client
followed by the Model subdirectory of a client. Use the setResourceIteratorFactory() method of a client to
specify a custom resource iterator factory.

Plugins and events

Guzzle\Service\Client exposes various events that allow you to hook in custom logic. A client object owns a
Symfony\Component\EventDispatcher\EventDispatcher object that can be accessed by calling
$client->getEventDispatcher(). You can use the event dispatcher to add listeners (a simple callback function) or
event subscribers (classes that listen to specific events of a dispatcher).

Events emitted from a Service Client

A Guzzle\Service\Client object emits the following events:

	Event name
	Description
	Event data

	client.command.create
	The client created a command object
	
	client: Client object

	command: Command object

	command.before_prepare
	Before a command is validated and built.
This is also before a request is created.
	
	command: Command being prepared

	command.after_prepare
	After a command instantiates and
configures its request object.
	
	command: Command that was prepared

	command.before_send
	The client is about to execute a prepared
command
	
	command: Command to execute

	command.after_send
	The client successfully completed
executing a command
	
	command: The command that was executed

	command.parse_response
	Called when responseType is class
and the response is about to be parsed.
	
	command: The command with a response
about to be parsed.

use Guzzle\Common\Event;
use Guzzle\Service\Client;

$client = new Client();

// create an event listener that operates on request objects
$client->getEventDispatcher()->addListener('command.after_prepare', function (Event $event) {
 $command = $event['command'];
 $request = $command->getRequest();

 // do something with request
});

use Guzzle\Common\Event;
use Guzzle\Common\Client;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class EventSubscriber implements EventSubscriberInterface
{
 public static function getSubscribedEvents()
 {
 return array(
 'client.command.create' => 'onCommandCreate',
 'command.parse_response' => 'onParseResponse'
);
 }

 public function onCommandCreate(Event $event)
 {
 $client = $event['client'];
 $command = $event['command'];
 // operate on client and command
 }

 public function onParseResponse(Event $event)
 {
 $command = $event['command'];
 // operate on the command
 }
}

$client = new Client();

$client->addSubscriber(new EventSubscriber());

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Using a service builder

The best way to instantiate Guzzle web service clients is to let Guzzle handle building the clients for you using a
ServiceBuilder. A ServiceBuilder is responsible for creating concrete client objects based on configuration settings
and helps to manage credentials for different environments.

You don't have to use a service builder, but they help to decouple your application from concrete classes and help to
share configuration data across multiple clients. Consider the following example. Here we are creating two clients that
require the same API public key and secret key. The clients are created using their factory() methods.

use MyService\FooClient;
use MyService\BarClient;

$foo = FooClient::factory(array(
 'key' => 'abc',
 'secret' => '123',
 'custom' => 'and above all'
));

$bar = BarClient::factory(array(
 'key' => 'abc',
 'secret' => '123',
 'custom' => 'listen to me'
));

The redundant specification of the API keys can be removed using a service builder.

use Guzzle\Service\Builder\ServiceBuilder;

$builder = ServiceBuilder::factory(array(
 'services' => array(
 'abstract_client' => array(
 'params' => array(
 'key' => 'abc',
 'secret' => '123'
)
),
 'foo' => array(
 'extends' => 'abstract_client',
 'class' => 'MyService\FooClient',
 'params' => array(
 'custom' => 'and above all'
)
),
 'bar' => array(
 'extends' => 'abstract_client',
 'class' => 'MyService\FooClient',
 'params' => array(
 'custom' => 'listen to me'
)
)
)
));

$foo = $builder->get('foo');
$bar = $builder->get('bar');

You can make managing your API keys even easier by saving the service builder configuration in a JSON format in a
.json file.

Creating a service builder

A ServiceBuilder can source information from an array, an PHP include file that returns an array, or a JSON file.

use Guzzle\Service\Builder\ServiceBuilder;

// Source service definitions from a JSON file
$builder = ServiceBuilder::factory('services.json');

Sourcing data from an array

Data can be source from a PHP array. The array must contain an associative services array that maps the name of a
client to the configuration information used by the service builder to create the client. Clients are given names
which are used to identify how a client is retrieved from a service builder. This can be useful for using multiple
accounts for the same service or creating development clients vs. production clients.

$services = array(
 'includes' => array(
 '/path/to/other/services.json',
 '/path/to/other/php_services.php'
),
 'services' => array(
 'abstract.foo' => array(
 'params' => array(
 'username' => 'foo',
 'password' => 'bar'
)
),
 'bar' => array(
 'extends' => 'abstract.foo',
 'class' => 'MyClientClass',
 'params' => array(
 'other' => 'abc'
)
)
)
);

A service builder configuration array contains two top-level array keys:

	Key
	Description

	includes
	Array of paths to JSON or PHP include files to include in the configuration.

	services
	Associative array of defined services that can be created by the service builder. Each service can
contain the following keys:

	Key
	Description

	class
	The concrete class to instantiate that implements the
Guzzle\Common\FromConfigInterface.

	extends
	The name of a previously defined service to extend from

	params
	Associative array of parameters to pass to the factory method of the service it is
instantiated

	alias
	An alias that can be used in addition to the array key for retrieving a client from
the service builder.

The first client defined, abstract.foo, is used as a placeholder of shared configuration values. Any service
extending abstract.foo will inherit its params. As an example, this can be useful when clients share the same username
and password.

The next client, bar, extends from abstract.foo using the extends attribute referencing the client from
which to extend. Additional parameters can be merged into the original service definition when extending a parent
service.

Important

Each client that you intend to instantiate must specify a class attribute that references the full class name
of the client being created. The class referenced in the class parameter must implement a static factory()
method that accepts an array or Guzzle\Common\Collection object and returns an instantiated object.

Sourcing from a PHP include

You can create service builder configurations using a PHP include file. This can be useful if you wish to take
advantage of an opcode cache like APC to speed up the process of loading and processing the configuration. The PHP
include file is the same format as an array, but you simply create a PHP script that returns an array and save the
file with the .php file extension.

<?php return array('services' => '...');
// Saved as config.php

This configuration file can then be used with a service builder.

$builder = ServiceBuilder::factory('/path/to/config.php');

Sourcing from a JSON document

You can use JSON documents to serialize your service descriptions. The JSON format uses the exact same structure as
the PHP array syntax, but it's just serialized using JSON.

{
 "includes": ["/path/to/other/services.json", "/path/to/other/php_services.php"],
 "services": {
 "abstract.foo": {
 "params": {
 "username": "foo",
 "password": "bar"
 }
 },
 "bar": {
 "extends": "abstract.foo",
 "class": "MyClientClass",
 "params": {
 "other": "abc"
 }
 }
 }
}

Referencing other clients in parameters

If one of your clients depends on another client as one of its parameters, you can reference that client by name by
enclosing the client's reference key in {}.

{
 "services": {
 "token": {
 "class": "My\Token\TokenFactory",
 "params": {
 "access_key": "xyz"
 }
 },
 "client": {
 "class": "My\Client",
 "params": {
 "token_client": "{token}",
 "version": "1.0"
 }
 }
 }
}

When client is constructed by the service builder, the service builder will first create the token service
and then inject the token service into client's factory method in the token_client parameter.

Retrieving clients from a service builder

Clients are referenced using a customizable name you provide in your service definition. The ServiceBuilder is a sort
of multiton object-- it will only instantiate a client once and return that client for subsequent retrievals. Clients
are retrieved by name (the array key used in the configuration) or by the alias setting of a service.

Here's an example of retrieving a client from your ServiceBuilder:

$client = $builder->get('foo');

// You can also use the ServiceBuilder object as an array
$client = $builder['foo'];

Creating throwaway clients

You can get a "throwaway" client (a client that is not persisted by the ServiceBuilder) by passing true in the
second argument of ServiceBuilder::get(). This allows you to create a client that will not be returned by other
parts of your code that use the service builder. Instead of passing true, you can pass an array of configuration
settings that will override the configuration settings specified in the service builder.

// Get a throwaway client and overwrite the "custom" setting of the client
$foo = $builder->get('foo', array(
 'custom' => 'in this world there are rules'
));

Getting raw configuration settings

You can get the raw configuration settings provided to the service builder for a specific service using the
getData($name) method of a service builder. This method will null if the service was not found in the service
builder or an array of configuration settings if the service was found.

$data = $builder->getData('foo');
echo $data['key'] . "\n";
echo $data['secret'] . "\n";
echo $data['custom'] . "\n";

Adding a plugin to all clients

You can add a plugin to all clients created by a service builder using the addGlobalPlugin($plugin) method of a
service builder and passing a Symfony\Component\EventDispatcher\EventSubscriberInterface object. The service builder
will then attach each global plugin to every client as it is created. This allows you to, for example, add a LogPlugin
to every request created by a service builder for easy debugging.

use Guzzle\Plugin\Log\LogPlugin;

// Add a debug log plugin to every client as it is created
$builder->addGlobalPlugin(LogPlugin::getDebugPlugin());

$foo = $builder->get('foo');
$foo->get('/')->send();
// Should output all of the data sent over the wire

Events emitted from a service builder

A Guzzle\Service\Builder\ServiceBuilder object emits the following events:

	Event name
	Description
	Event data

	service_builder.create_client
	Called when a client is created
	
	client: The created client object

use Guzzle\Common\Event;
use Guzzle\Service\Builder\ServiceBuilder;

$builder = ServiceBuilder::factory('/path/to/config.json');

// Add an event listener to print out each client client as it is created
$builder->getEventDispatcher()->addListener('service_builder.create_client', function (Event $e) {
 echo 'Client created: ' . get_class($e['client']) . "\n";
});

$foo = $builder->get('foo');
// Should output the class used for the "foo" client

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Guzzle service descriptions

Guzzle allows you to serialize HTTP requests and parse HTTP responses using a DSL called a service descriptions.
Service descriptions define web service APIs by documenting each operation, the operation's parameters, validation
options for each parameter, an operation's response, how the response is parsed, and any errors that can be raised for
an operation. Writing a service description for a web service allows you to more quickly consume a web service than
writing concrete commands for each web service operation.

Guzzle service descriptions can be representing using a PHP array or JSON document. Guzzle's service descriptions are
heavily inspired by Swagger [http://swagger.wordnik.com/].

Service description schema

A Guzzle Service description must match the following JSON schema document. This document can also serve as a guide when
implementing a Guzzle service description.

Download the schema here: Guzzle JSON schema document

{
 "additionalProperties": true,
 "name": {
 "type": "string",
 "description": "Name of the web service"
 },
 "apiVersion": {
 "type": ["string", "number"],
 "description": "Version identifier that the service description is compatible with"
 },
 "baseUrl": {
 "type": "string",
 "description": "Base URL of the web service. Any relative URI specified in an operation will be merged with the baseUrl using the process defined in RFC 2396"
 },
 "basePath": {
 "type": "string",
 "description": "Alias of baseUrl"
 },
 "_description": {
 "type": "string",
 "description": "Short summary of the web service. This is actually called 'description' but this JSON schema wont validate using just description."
 },
 "operations": {
 "description": "Operations of the web service",
 "type": "object",
 "properties": {
 "extends": {
 "type": "string",
 "description": "Extend from another operation by name. The parent operation must be defined before the child."
 },
 "httpMethod": {
 "type": "string",
 "description": "HTTP method used with the operation (e.g. GET, POST, PUT, DELETE, PATCH, etc)"
 },
 "uri": {
 "type": "string",
 "description": "URI of the operation. The uri attribute can contain URI templates. The variables of the URI template are parameters of the operation with a location value of uri"
 },
 "summary": {
 "type": "string",
 "description": "Short summary of what the operation does"
 },
 "class": {
 "type": "string",
 "description": "Custom class to instantiate instead of the default Guzzle\\Service\\Command\\OperationCommand"
 },
 "responseClass": {
 "type": "string",
 "description": "This is what is returned from the method. Can be a primitive, class name, or model name."
 },
 "responseNotes": {
 "type": "string",
 "description": "A description of the response returned by the operation"
 },
 "responseType": {
 "type": "string",
 "description": "The type of response that the operation creates. If not specified, this value will be automatically inferred based on whether or not there is a model matching the name, if a matching class name is found, or set to 'primitive' by default.",
 "enum": ["primitive", "class", "model", "documentation"]
 },
 "deprecated": {
 "type": "boolean",
 "description": "Whether or not the operation is deprecated"
 },
 "errorResponses": {
 "description": "Errors that could occur while executing the operation",
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "code": {
 "type": "number",
 "description": "HTTP response status code of the error"
 },
 "reason": {
 "type": "string",
 "description": "Response reason phrase or description of the error"
 },
 "class": {
 "type": "string",
 "description": "A custom exception class that would be thrown if the error is encountered"
 }
 }
 }
 },
 "data": {
 "type": "object",
 "additionalProperties": "true"
 },
 "parameters": {
 "$ref": "parameters",
 "description": "Parameters of the operation. Parameters are used to define how input data is serialized into a HTTP request."
 },
 "additionalParameters": {
 "$ref": "parameters",
 "description": "Validation and serialization rules for any parameter supplied to the operation that was not explicitly defined."
 }
 }
 },
 "models": {
 "description": "Schema models that can be referenced throughout the service description. Models can be used to define how an HTTP response is parsed into a Guzzle\\Service\\Resource\\Model object.",
 "type": "object",
 "properties": {
 "$ref": "parameters",
 "description": "Parameters of the model. When a model is referenced in a responseClass attribute of an operation, parameters define how a HTTP response message is parsed into a Guzzle\\Service\\Resource\\Model."
 }
 },
 "includes": {
 "description": "Service description files to include and extend from (can be a .json, .js, or .php file)",
 "type": "array",
 "items": {
 "type": "string",
 "pattern": ".+\\.(js|json|php)$"
 }
 },
 "definitions": {
 "parameters": {
 "extends": "http://json-schema.org/schema",
 "id": "parameters",
 "name": {
 "type": "string",
 "description": "Unique name of the parameter"
 },
 "type": {
 "type": ["string", "array"],
 "description": "Type of variable (string, number, integer, boolean, object, array, numeric, null, any). Types are using for validation and determining the structure of a parameter. You can use a union type by providing an array of simple types. If one of the union types matches the provided value, then the value is valid."
 },
 "instanceOf": {
 "type": "string",
 "description": "When the type is an object, you can specify the class that the object must implement"
 },
 "required": {
 "type": "boolean",
 "description": "Whether or not the parameter is required"
 },
 "default": {
 "description": "Default value to use if no value is supplied"
 },
 "static": {
 "type": "bool",
 "description": "Set to true to specify that the parameter value cannot be changed from the default setting"
 },
 "description": {
 "type": "string",
 "description": "Documentation of the parameter"
 },
 "location": {
 "type": "string",
 "description": "The location of a request used to apply a parameter. Custom locations can be registered with a command, but the defaults are uri, query, statusCode, reasonPhrase, header, body, json, xml, postField, postFile, responseBody"
 },
 "sentAs": {
 "type": "string",
 "description": "Specifies how the data being modeled is sent over the wire. For example, you may wish to include certain headers in a response model that have a normalized casing of FooBar, but the actual header is x-foo-bar. In this case, sentAs would be set to x-foo-bar."
 },
 "filters": {
 "type": "array",
 "description": "Array of static method names to to run a parameter value through. Each value in the array must be a string containing the full class path to a static method or an array of complex filter information. You can specify static methods of classes using the full namespace class name followed by ‘::’ (e.g. FooBar::baz()). Some filters require arguments in order to properly filter a value. For complex filters, use a hash containing a ‘method’ key pointing to a static method, and an ‘args’ key containing an array of positional arguments to pass to the method. Arguments can contain keywords that are replaced when filtering a value: '@value‘ is replaced with the value being validated, '@api‘ is replaced with the Parameter object.",
 "items": {
 "type": ["string", {
 "object": {
 "properties": {
 "method": {
 "type": "string",
 "description": "PHP function to call",
 "required": true
 },
 "args": {
 "type": "array"
 }
 }
 }
 }]
 }
 }
 }
 }
}

Top-level attributes

Service descriptions are comprised of the following top-level attributes:

{
 "name": "string",
 "apiVersion": "string|number",
 "baseUrl": "string",
 "description": "string",
 "operations": {},
 "models": {},
 "includes": ["string.php", "string.json"]
}

	Property Name
	Value
	Description

	name
	string
	Name of the web service

	apiVersion
	string|number
	Version identifier that the service description is compatible with

	baseUrl or basePath
	string
	Base URL of the web service. Any relative URI specified in an operation will be merged with the baseUrl using the
process defined in RFC 2396. Some clients require custom logic to determine the baseUrl. In those cases, it is best
to not include a baseUrl in the service description, but rather allow the factory method of the client to configure
the client’s baseUrl.

	description
	string
	Short summary of the web service

	operations
	object containing
Operations
	Operations of the service. The key is the name of the operation and value is the attributes of the operation.

	models
	object containing
Model Schema
	Schema models that can be referenced throughout the service description. Models can be used to define how an HTTP
response is parsed into a Guzzle\Service\Resource\Model object when an operation uses a model responseType

	includes
	array of .js,
.json, or .php
files.
	Service description files to include and extend from (can be a .json, .js, or .php file)

	(any additional properties)
	mixed
	Any additional properties specified as top-level attributes are allowed and will be treated as arbitrary data

Operations

Operations are the actions that can be taken on a service. Each operation is given a unique name and has a distinct
endpoint and HTTP method. If an API has a DELETE /users/:id operation, a satisfactory operation name might be
DeleteUser with a parameter of id that is inserted into the URI.

{
 "operations": {
 "operationName": {
 "extends": "string",
 "httpMethod": "GET|POST|PUT|DELETE|PATCH|string",
 "uri": "string",
 "summary": "string",
 "class": "string",
 "responseClass": "string",
 "responseNotes": "string",
 "type": "string",
 "description": "string",
 "responseType": "primitive|class|(model by name)|documentation|(string)",
 "deprecated": false,
 "errorResponses": [
 {
 "code": 500,
 "reason": "Unexpected Error",
 "class": "string"
 }
],
 "data": {
 "foo": "bar",
 "baz": "bam"
 },
 "parameters": {}
 }
 }
}

	Property Name
	Value
	Description

	extends
	string
	Extend from another operation by name. The parent operation must be defined before the child.

	httpMethod
	string
	HTTP method used with the operation (e.g. GET, POST, PUT, DELETE, PATCH, etc)

	uri
	string
	URI of the operation. The uri attribute can contain URI templates. The variables of the URI template are parameters of the operation with a location value of uri

	summary
	string
	Short summary of what the operation does

	class
	string
	Custom class to instantiate instead of the default Guzzle\Service\Command\OperationCommand. Using this attribute allows you to define an operation using a service description, but allows more customized logic to be implemented in user-land code.

	responseClass
	string
	Defined what is returned from the method. Can be a primitive, class name, or model name. You can specify the name of a class to return a more customized result from the operation (for example, a domain model object). When using the name of a PHP class, the class must implement Guzzle\Service\Command\ResponseClassInterface.

	responseNotes
	string
	A description of the response returned by the operation

	responseType
	string
	The type of response that the operation creates: one of primitive, class, model, or documentation. If not specified, this value will be automatically inferred based on whether or not there is a model matching the name, if a matching class name is found, or set to 'primitive' by default.

	deprecated
	boolean
	Whether or not the operation is deprecated

	errorResponses
	array
	Errors that could occur while executing the operation. Each item of the array is an object that can contain a 'code' (HTTP response status code of the error), 'reason' (reason phrase or description of the error), and 'class' (an exception class that will be raised when this error is encountered)

	data
	object
	Any arbitrary data to associate with the operation

	parameters
	object containing Parameter schema objects
	Parameters of the operation. Parameters are used to define how input data is serialized into a HTTP request.

	additionalParameters
	A single Parameter schema object
	Validation and serialization rules for any parameter supplied to the operation that was not explicitly defined.

additionalParameters

When a webservice offers a large number of parameters that all are set in the same location (for example the query
string or a JSON document), defining each parameter individually can require a lot of time and repetition. Furthermore,
some web services allow for completely arbitrary parameters to be supplied for an operation. The
additionalParameters attribute can be used to solve both of these issues.

As an example, we can define a Twitter API operation quite easily using additionalParameters. The
GetMentions operation accepts a large number of query string parameters. Defining each of these parameters
is ideal because it provide much more introspection for the client and opens the possibility to use the description with
other tools (e.g. a documentation generator). However, you can very quickly provide a "catch-all" serialization rule
that will place any custom parameters supplied to an operation the generated request's query string parameters.

{
 "name": "Twitter",
 "apiVersion": "1.1",
 "baseUrl": "https://api.twitter.com/1.1",
 "operations": {
 "GetMentions": {
 "httpMethod": "GET",
 "uri": "statuses/mentions_timeline.json",
 "responseClass": "GetMentionsOutput",
 "additionalParameters": {
 "location": "query"
 }
 }
 },
 "models": {
 "GetMentionsOutput": {
 "type": "object",
 "additionalProperties": {
 "location": "json"
 }
 }
 }
}

responseClass

The responseClass attribute is used to define the return value of an operation (what is returned by calling the
getResult() method of a command object). The value set in the responseClass attribute can be one of "primitive"
(meaning the result with be primitive type like a string), a class name meaning the result will be an instance of a
specific user-land class, or a model name meaning the result will be a Guzzle\Service\Resource\Model object that
uses a model schema to define how the HTTP response is parsed.

Note

Using a class name with a responseClass will only work if it is supported by the class that is instantiated
for the operation. Keep this in mind when specifying a custom class attribute that points to a custom
Guzzle\Service\Command\CommandInterface class. The default class,
Guzzle\Service\Command\OperationCommand, does support setting custom class attributes.

You can specify the name of a class to return a more customized result from the operation (for example, a domain model
object). When using the name of a PHP class, the class must implement Guzzle\Service\Command\ResponseClassInterface.
Here's a very simple example of implementing a custom responseClass object.

{
 "operations": {
 "test": {
 "responseClass": "MyApplication\\User"
 }
 }
}

namespace MyApplication;

use Guzzle\Service\Command\ResponseClassInterface;
use Guzzle\Service\Command\OperationCommand;

class User implements ResponseClassInterface
{
 protected $name;

 public static function fromCommand(OperationCommand $command)
 {
 $response = $command->getResponse();
 $xml = $response->xml();

 return new self((string) $xml->name);
 }

 public function __construct($name)
 {
 $this->name = $name;
 }
}

errorResponses

errorResponses is an array containing objects that define the errors that could occur while executing the
operation. Each item of the array is an object that can contain a 'code' (HTTP response status code of the error),
'reason' (reason phrase or description of the error), and 'class' (an exception class that will be raised when this
error is encountered).

ErrorResponsePlugin

Error responses are by default only used for documentation. If you don't need very complex exception logic for your web
service errors, then you can use the Guzzle\Plugin\ErrorResponse\ErrorResponsePlugin to automatically throw defined
exceptions when one of the errorResponse rules are matched. The error response plugin will listen for the
request.complete event of a request created by a command object. Every response (including a successful response) is
checked against the list of error responses for an exact match using the following order of checks:

	Does the errorResponse have a defined class?

	Is the errorResponse code equal to the status code of the response?

	Is the errorResponse reason equal to the reason phrase of the response?

	Throw the exception stored in the class attribute of the errorResponse.

The class attribute must point to a class that implements
Guzzle\Plugin\ErrorResponse\ErrorResponseExceptionInterface. This interface requires that an error response class
implements public static function fromCommand(CommandInterface $command, Response $response). This method must
return an object that extends from \Exception. After an exception is returned, it is thrown by the plugin.

Parameter schema

Parameters in both operations and models are represented using the
JSON schema [http://tools.ietf.org/id/draft-zyp-json-schema-04.html] syntax.

	Property Name
	Value
	Description

	name
	string
	Unique name of the parameter

	type
	string|array
	Type of variable (string, number, integer, boolean, object, array, numeric, null, any). Types are using for validation and determining the structure of a parameter. You can use a union type by providing an array of simple types. If one of the union types matches the provided value, then the value is valid.

	instanceOf
	string
	When the type is an object, you can specify the class that the object must implement

	required
	boolean
	Whether or not the parameter is required

	default
	mixed
	Default value to use if no value is supplied

	static
	boolean
	Set to true to specify that the parameter value cannot be changed from the default setting

	description
	string
	Documentation of the parameter

	location
	string
	The location of a request used to apply a parameter. Custom locations can be registered with a command, but the defaults are uri, query, statusCode, reasonPhrase, header, body, json, xml, postField, postFile, responseBody

	sentAs
	string
	Specifies how the data being modeled is sent over the wire. For example, you may wish to include certain headers in a response model that have a normalized casing of FooBar, but the actual header is x-foo-bar. In this case, sentAs would be set to x-foo-bar.

	filters
	array
	Array of functions to to run a parameter value through.

filters

Each value in the array must be a string containing the full class path to a static method or an array of complex
filter information. You can specify static methods of classes using the full namespace class name followed by
"::" (e.g. FooBar::baz()). Some filters require arguments in order to properly filter a value. For complex filters,
use an object containing a method attribute pointing to a function, and an args attribute containing an
array of positional arguments to pass to the function. Arguments can contain keywords that are replaced when filtering
a value: @value is replaced with the value being filtered, and @api is replaced with the actual Parameter
object.

{
 "filters": [
 "strtolower",
 {
 "method": "MyClass::convertString",
 "args": ["test", "@value", "@api"]
 }
]
}

The above example will filter a parameter using strtolower. It will then call the convertString static method
of MyClass, passing in "test", the actual value of the parameter, and a Guzzle\Service\Description\Parameter
object.

Operation parameter location attributes

The location field of top-level parameters control how a parameter is serialized when generating a request.

uri location

Parameters are injected into the uri attribute of the operation using
URI-template expansion [http://tools.ietf.org/html/rfc6570].

{
 "operations": {
 "uriTest": {
 "uri": "/test/{testValue}",
 "parameters": {
 "testValue": {
 "location": "uri"
 }
 }
 }
 }
}

query location

Parameters are injected into the query string of a request. Query values can be nested, which would result in a PHP
style nested query string. The name of a parameter is the default name of the query string parameter added to the
request. You can override this behavior by specifying the sentAs attribute on the parameter.

{
 "operations": {
 "queryTest": {
 "parameters": {
 "testValue": {
 "location": "query",
 "sentAs": "test_value"
 }
 }
 }
 }
}

header location

Parameters are injected as headers on an HTTP request. The name of the parameter is used as the name of the header by
default. You can change the name of the header created by the parameter using the sentAs attribute.

Headers that are of type object will be added as multiple headers to a request using the key of the input array as
the header key. Setting a sentAs attribute along with a type object will use the value of sentAs as a
prefix for each header key.

body location

Parameters are injected as the body of a request. The input of these parameters may be anything that can be cast to a
string or a Guzzle\Http\EntityBodyInterface object.

postField location

Parameters are inserted as POST fields in a request. Nested values may be supplied and will be represented using
PHP style nested query strings. The POST field name is the same as the parameter name by default. You can use the
sentAs parameter to override the POST field name.

postFile location

Parameters are added as POST files. A postFile value may be a string pointing to a local filename or a
Guzzle\Http\Message\PostFileInterface object. The name of the POST file will be the name of the parameter by
default. You can use a custom POST file name by using the sentAs attribute.

Supports "string" and "array" types.

json location

Parameters are added to the body of a request as top level keys of a JSON document. Nested values may be specified,
with any number of nested Guzzle\Common\ToArrayInterface objects. When JSON parameters are specified, the
Content-Type of the request will change to application/json if a Content-Type has not already been specified
on the request.

xml location

Parameters are added to the body of a request as top level nodes of an XML document. Nested values may be specified,
with any number of nested Guzzle\Common\ToArrayInterface objects. When XML parameters are specified, the
Content-Type of the request will change to application/xml if a Content-Type has not already been specified
on the request.

responseBody location

Specifies the EntityBody of a response. This can be used to download the response body to a file or a custom Guzzle
EntityBody object.

No location

If a parameter has no location attribute, then the parameter is simply used as a data value.

Other locations

Custom locations can be registered as new locations or override default locations if needed.

Model Schema

Models are used in service descriptions to provide generic JSON schema definitions that can be extended from or used in
$ref attributes. Models can also be referenced in a responseClass attribute to provide valuable output to an
operation. Models are JSON schema documents and use the exact syntax and attributes used in parameters.

Response Models

Response models describe how a response is parsed into a Guzzle\Service\Resource\Model object. Response models are
always modeled as JSON schema objects. When an HTTP response is parsed using a response model, the rules specified on
each property of a response model will translate 1:1 as keys in a PHP associative array. When a sentAs attribute is
found in response model parameters, the value retrieved from the HTTP response is retrieved using the sentAs
parameter but stored in the response model using the name of the parameter.

The location field of top-level parameters in a response model tell response parsers how data is retrieved from a
response.

statusCode location

Retrieves the status code of the response.

reasonPhrase location

Retrieves the reason phrase of the response.

header location

Retrieves a header from the HTTP response.

body location

Retrieves the body of an HTTP response.

json location

Retrieves a top-level parameter from a JSON document contained in an HTTP response.

You can use additionalProperties if the JSON document is wrapped in an outer array. This allows you to parse the
contents of each item in the array using the parsing rules defined in the additionalProperties schema.

xml location

Retrieves a top-level node value from an XML document contained in an HTTP response.

Other locations

Custom locations can be registered as new locations or override default locations if needed.

Example service description

Let's say you're interacting with a web service called 'Foo' that allows for the following routes and methods:

GET/POST /users
GET/DELETE /users/:id

The following JSON service description implements this simple web service:

{
 "name": "Foo",
 "apiVersion": "2012-10-14",
 "baseUrl": "http://api.foo.com",
 "description": "Foo is an API that allows you to Baz Bar",
 "operations": {
 "GetUsers": {
 "httpMethod": "GET",
 "uri": "/users",
 "summary": "Gets a list of users",
 "responseClass": "GetUsersOutput"
 },
 "CreateUser": {
 "httpMethod": "POST",
 "uri": "/users",
 "summary": "Creates a new user",
 "responseClass": "CreateUserOutput",
 "parameters": {
 "name": {
 "location": "json",
 "type": "string"
 },
 "age": {
 "location": "json",
 "type": "integer"
 }
 }
 },
 "GetUser": {
 "httpMethod": "GET",
 "uri": "/users/{id}",
 "summary": "Retrieves a single user",
 "responseClass": "GetUserOutput",
 "parameters": {
 "id": {
 "location": "uri",
 "description": "User to retrieve by ID",
 "required": true
 }
 }
 },
 "DeleteUser": {
 "httpMethod": "DELETE",
 "uri": "/users/{id}",
 "summary": "Deletes a user",
 "responseClass": "DeleteUserOutput",
 "parameters": {
 "id": {
 "location": "uri",
 "description": "User to delete by ID",
 "required": true
 }
 }
 }
 },
 "models": {
 "GetUsersOutput": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": {
 "location": "json",
 "type": "string"
 },
 "age": {
 "location": "json",
 "type": "integer"
 }
 }
 }
 },
 "CreateUserOutput": {
 "type": "object",
 "properties": {
 "id": {
 "location": "json",
 "type": "string"
 },
 "location": {
 "location": "header",
 "sentAs": "Location",
 "type": "string"
 }
 }
 },
 "GetUserOutput": {
 "type": "object",
 "properties": {
 "name": {
 "location": "json",
 "type": "string"
 },
 "age": {
 "location": "json",
 "type": "integer"
 }
 }
 },
 "DeleteUserOutput": {
 "type": "object",
 "properties": {
 "status": {
 "location": "statusCode",
 "type": "integer"
 }
 }
 }
 }
}

If you attach this service description to a client, you would completely configure the client to interact with the
Foo web service and provide valuable response models for each operation.

use Guzzle\Service\Description\ServiceDescription;

$description = ServiceDescription::factory('/path/to/client.json');
$client->setDescription($description);

$command = $client->getCommand('DeleteUser', array('id' => 123));
$responseModel = $client->execute($command);
echo $responseModel['status'];

Note

You can add the service description to your client's factory method or constructor.

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Batching

Guzzle provides a fairly generic and very customizable batching framework that allows developers to efficiently
transfer requests in parallel.

Sending requests and commands in parallel

You can send HTTP requests in parallel by passing an array of Guzzle\Http\Message\RequestInterface objects to
Guzzle\Http\Client::send():

$responses = $client->send(array(
 $client->get('http://www.example.com/foo'),
 $client->get('http://www.example.com/baz')
 $client->get('http://www.example.com/bar')
));

You can send commands in parallel by passing an array of Guzzle\Service\Command\CommandInterface objects
Guzzle\Service\Client::execute():

$commands = $client->execute(array(
 $client->getCommand('foo'),
 $client->getCommand('baz'),
 $client->getCommand('bar')
));

These approaches work well for most use-cases. When you need more control over the requests that are sent in
parallel or you need to send a large number of requests, you need to use the functionality provided in the
Guzzle\Batch namespace.

Batching overview

The batch object, Guzzle\Batch\Batch, is a queue. You add requests to the queue until you are ready to transfer
all of the requests. In order to efficiently transfer the items in the queue, the batch object delegates the
responsibility of dividing the queue into manageable parts to a divisor (Guzzle\Batch\BatchDivisorInterface).
The batch object then iterates over each array of items created by the divisor and sends them to the batch object's
Guzzle\Batch\BatchTransferInterface.

use Guzzle\Batch\Batch;
use Guzzle\Http\BatchRequestTransfer;

// BatchRequestTransfer acts as both the divisor and transfer strategy
$transferStrategy = new BatchRequestTransfer(10);
$divisorStrategy = $transferStrategy;

$batch = new Batch($transferStrategy, $divisorStrategy);

// Add some requests to the batch queue
$batch->add($request1)
 ->add($request2)
 ->add($request3);

// Flush the queue and retrieve the flushed items
$arrayOfTransferredRequests = $batch->flush();

Note

You might find that your transfer strategy will need to act as both the divisor and transfer strategy.

Using the BatchBuilder

The Guzzle\Batch\BatchBuilder makes it easier to create batch objects. The batch builder also provides an easier
way to add additional behaviors to your batch object.

Transferring requests

The Guzzle\Http\BatchRequestTransfer class efficiently transfers HTTP requests in parallel by grouping batches of
requests by the curl_multi handle that is used to transfer the requests.

use Guzzle\Batch\BatchBuilder;

$batch = BatchBuilder::factory()
 ->transferRequests(10)
 ->build();

Transferring commands

The Guzzle\Service\Command\BatchCommandTransfer class efficiently transfers service commands by grouping commands
by the client that is used to transfer them. You can add commands to a batch object that are transferred by different
clients, and the batch will handle the rest.

use Guzzle\Batch\BatchBuilder;

$batch = BatchBuilder::factory()
 ->transferCommands(10)
 ->build();

$batch->add($client->getCommand('foo'))
 ->add($client->getCommand('baz'))
 ->add($client->getCommand('bar'));

$commands = $batch->flush();

Batch behaviors

You can add various behaviors to your batch that allow for more customizable transfers.

Automatically flushing a queue

Use the Guzzle\Batch\FlushingBatch decorator when you want to pump a large number of items into a batch queue and
have the queue automatically flush when the size of the queue reaches a certain threshold.

use Guzzle\Batch\BatchBuilder;

$batch = BatchBuilder::factory()
 ->transferRequests(10)
 ->autoFlushAt(10)
 ->build();

Batch builder method: autoFlushAt($threshold)

Notifying on flush

Use the Guzzle\Batch\NotifyingBatch decorator if you want a function to be notified each time the batch queue is
flushed. This is useful when paired with the flushing batch decorator. Pass a callable to the notify() method of
a batch builder to use this decorator with the builder.

use Guzzle\Batch\BatchBuilder;

$batch = BatchBuilder::factory()
 ->transferRequests(10)
 ->autoFlushAt(10)
 ->notify(function (array $transferredItems) {
 echo 'Transferred ' . count($transferredItems) . "items\n";
 })
 ->build();

Batch builder method:: notify(callable $callback)

Keeping a history

Use the Guzzle\Batch\HistoryBatch decorator if you want to maintain a history of all the items transferred with
the batch queue.

use Guzzle\Batch\BatchBuilder;

$batch = BatchBuilder::factory()
 ->transferRequests(10)
 ->keepHistory()
 ->build();

After transferring items, you can use the getHistory() of a batch to retrieve an array of transferred items. Be
sure to periodically clear the history using clearHistory().

Batch builder method: keepHistory()

Exception buffering

Use the Guzzle\Batch\ExceptionBufferingBatch decorator to buffer exceptions during a transfer so that you can
transfer as many items as possible then deal with the errored batches after the transfer completes. After transfer,
use the getExceptions() method of a batch to retrieve an array of
Guzzle\Batch\Exception\BatchTransferException objects. You can use these exceptions to attempt to retry the
failed batches. Be sure to clear the buffered exceptions when you are done with them by using the
clearExceptions() method.

Batch builder method: bufferExceptions()

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Resource iterators

Web services often implement pagination in their responses which requires the end-user to issue a series of consecutive
requests in order to fetch all of the data they asked for. Users of your web service client should not be responsible
for implementing the logic involved in iterating through pages of results. Guzzle provides a simple resource iterator
foundation to make it easier on web service client developers to offer a useful abstraction layer.

Getting an iterator from a client

ResourceIteratorInterface GuzzleServiceClient::getIterator($command [, array $commandOptions, array $iteratorOptions])

The getIterator method of a Guzzle\Service\ClientInterface object provides a convenient interface for
instantiating a resource iterator for a specific command. This method implicitly uses a
Guzzle\Service\Resource\ResourceIteratorFactoryInterface object to create resource iterators. Pass an
instantiated command object or the name of a command in the first argument. When passing the name of a command, the
command factory of the client will create the command by name using the $commandOptions array. The third argument
may be used to pass an array of options to the constructor of the instantiated ResourceIteratorInterface object.

$iterator = $client->getIterator('get_users');

foreach ($iterator as $user) {
 echo $user['name'] . ' age ' . $user['age'] . PHP_EOL;
}

The above code sample might execute a single request or a thousand requests. As a consumer of a web service, I don't
care. I just want to iterate over all of the users.

Iterator options

The two universal options that iterators should support are limit and page_size. Using the limit option
tells the resource iterator to attempt to limit the total number of iterated resources to a specific amount. Keep in
mind that this is not always possible due to limitations that may be inherent to a web service. The page_size
option is used to tell a resource iterator how many resources to request per page of results. Much like the limit
option, you can not rely on getting back exactly the number of resources your specify in the page_size option.

Note

The limit and page_size options can also be specified on an iterator using the setLimit($limit) and
setPageSize($pageSize) methods.

Resolving iterator class names

The default resource iterator factory of a client object expects that your iterators are stored under the Model
folder of your client and that an iterator is names after the CamelCase name of a command followed by the word
"Iterator". For example, if you wanted to create an iterator for the get_users command, then your iterator class
would be Model\GetUsersIterator and would be stored in Model/GetUsersIterator.php.

Creating an iterator

While not required, resource iterators in Guzzle typically iterate using a Guzzle\Service\Command\CommandInterface
object. Guzzle\Service\Resource\ResourceIterator, the default iterator implementation that you should extend,
accepts a command object and array of iterator options in its constructor. The command object passed to the resource
iterator is expected to be ready to execute and not previously executed. The resource iterator keeps a reference of
this command and clones the original command each time a subsequent request needs to be made to fetch more data.

Implement the sendRequest method

The most important thing (and usually the only thing) you need to do when creating a resource iterator is to implement
the sendRequest() method of the resource iterator. The sendRequest() method is called when you begin
iterating or if there are no resources left to iterate and it you expect to retrieve more resources by making a
subsequent request. The $this->command property of the resource iterator is updated with a cloned copy of the
original command object passed into the constructor of the iterator. Use this command object to issue your subsequent
requests.

The sendRequest() method must return an array of the resources you retrieved from making the subsequent call.
Returning an empty array will stop the iteration. If you suspect that your web service client will occasionally return
an empty result set but still requires further iteration, then you must implement a sort of loop in your
sendRequest() method that will continue to issue subsequent requests until your reach the end of the paginated
result set or until additional resources are retrieved from the web service.

Update the nextToken property

Beyond fetching more results, the sendRequest() method is responsible for updating the $this->nextToken
property of the iterator. Setting this property to anything other than null tells the iterator that issuing a
subsequent request using the nextToken value will probably return more results. You must continually update this
value in your sendRequest() method as each response is received from the web service.

Example iterator

Let's say you want to implement a resource iterator for the get_users command of your web service. The
get_users command receives a response that contains a list of users, and if there are more pages of results to
retrieve, returns a value called next_user. This return value is known as the next token and should be used to
issue subsequent requests.

Assume the response to a get_users command returns JSON data that looks like this:

{
 "users": [
 { "name": "Craig Johnson", "age": 10 },
 { "name": "Tom Barker", "age": 20 },
 { "name": "Bob Mitchell", "age": 74 }
],
 "next_user": "Michael Dowling"
}

Assume that because there is a next_user value, there will be more users if a subsequent request is issued. If the
next_user value is missing or null, then we know there are no more results to fetch. Let's implement a resource
iterator for this command.

namespace MyService\Model;

use Guzzle\Service\Resource\ResourceIterator;

/**
 * Iterate over a get_users command
 */
class GetUsersIterator extends ResourceIterator
{
 protected function sendRequest()
 {
 // If a next token is set, then add it to the command
 if ($this->nextToken) {
 $this->command->set('next_user', $this->nextToken);
 }

 // Execute the command and parse the result
 $result = $this->command->execute();

 // Parse the next token
 $this->nextToken = isset($result['next_user']) ? $result['next_user'] : false;

 return $result['users'];
 }
}

As you can see, it's pretty simple to implement an iterator. There are a few things that you should notice from this
example:

	You do not need to create a new command in the sendRequest() method. A new command object is cloned from the
original command passed into the constructor of the iterator before the sendRequest() method is called.
Remember that the resource iterator expects a command that has not been executed.

	When the sendRequest() method is first called, you will not have a $this->nextToken value, so always check
before setting it on a command. Notice that the next token is being updated each time a request is sent.

	After fetching more resources from the service, always return an array of resources.

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Guzzle iterators

Guzzle provides several SPL iterators that can be used with other SPL iterators, including Guzzle resource iterators.
Guzzle's guzzle/iterator component can also be used independently of the rest of Guzzle through Packagist and
Composer: https://packagist.org/packages/guzzle/iterator

ChunkedIterator

Pulls out multiple values from an inner iterator and yields and array of values for each outer iteration -- essentially
pulling out chunks of values from the inner iterator.

use Guzzle\Iterator\ChunkedIterator;

$inner = new ArrayIterator(range(0, 8));
$chunkedIterator = new ChunkedIterator($inner, 2);

foreach ($chunkedIterator as $chunk) {
 echo implode(', ', $chunk) . "\n";
}

// >>> 0, 1
// >>> 2, 3
// >>> 4, 5
// >>> 6, 7
// >>> 8

FilterIterator

This iterator is used to filter values out of the inner iterator. This iterator can be used when PHP 5.4's
CallbackFilterIterator is not available.

use Guzzle\Iterator\FilterIterator;

$inner = new ArrayIterator(range(1, 10));
$filterIterator = new FilterIterator($inner, function ($value) {
 return $value % 2;
});

foreach ($filterIterator as $value) {
 echo $value . "\n";
}

// >>> 2
// >>> 4
// >>> 6
// >>> 8
// >>> 10

MapIterator

This iterator modifies the values of the inner iterator before yielding.

use Guzzle\Iterator\MapIterator;

$inner = new ArrayIterator(range(0, 3));

$mapIterator = new MapIterator($inner, function ($value) {
 return $value * 10;
});

foreach ($mapIterator as $value) {
 echo $value . "\n";
}

// >>> 0
// >>> 10
// >>> 20
// >>> 30

MethodProxyIterator

This decorator is useful when you need to expose a specific method from an inner iterator that might be wrapper
by one or more iterator decorators. This decorator proxies missing method calls to each inner iterator until one
of the inner iterators can fulfill the call.

use Guzzle\Iterator\MethodProxyIterator;

$inner = new \ArrayIterator();
$proxy = new MethodProxyIterator($inner);

// Proxy method calls to the ArrayIterator
$proxy->append('a');
$proxy->append('b');

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Guzzle

 	Guzzle Documentation

Unit Testing Guzzle clients

Guzzle provides several tools that will enable you to easily unit test your web service clients.

	PHPUnit integration

	Mock responses

	node.js web server for integration testing

PHPUnit integration

Guzzle is unit tested using PHPUnit [http://www.phpunit.de/]. Your web service client's unit tests should extend
Guzzle\Tests\GuzzleTestCase so that you can take advantage of some of the built in helpers.

In order to unit test your client, a developer would need to copy phpunit.xml.dist to phpunit.xml and make any needed
modifications. As a best practice and security measure for you and your contributors, it is recommended to add an
ignore statement to your SCM so that phpunit.xml is ignored.

Bootstrapping

Your web service client should have a tests/ folder that contains a bootstrap.php file. The bootstrap.php file
responsible for autoloading and configuring a Guzzle\Service\Builder\ServiceBuilder that is used throughout your
unit tests for loading a configured client. You can add custom parameters to your phpunit.xml file that expects users
to provide the path to their configuration data.

Guzzle\Tests\GuzzleTestCase::setServiceBuilder(Aws\Common\Aws::factory($_SERVER['CONFIG']));

Guzzle\Tests\GuzzleTestCase::setServiceBuilder(Guzzle\Service\Builder\ServiceBuilder::factory(array(
 'test.unfuddle' => array(
 'class' => 'Guzzle.Unfuddle.UnfuddleClient',
 'params' => array(
 'username' => 'test_user',
 'password' => '****',
 'subdomain' => 'test'
)
)
)));

The above code registers a service builder that can be used throughout your unit tests. You would then be able to
retrieve an instantiated and configured Unfuddle client by calling $this->getServiceBuilder()->get('test.unfuddle).
The above code assumes that $_SERVER['CONFIG'] contains the path to a file that stores service description
configuration.

Unit testing remote APIs

Mock responses

One of the benefits of unit testing is the ability to quickly determine if there are errors in your code. If your
unit tests run slowly, then they become tedious and will likely be run less frequently. Guzzle's philosophy on unit
testing web service clients is that no network access should be required to run the unit tests. This means that
responses are served from mock responses or local servers. By adhering to this principle, tests will run much faster
and will not require an external resource to be available. The problem with this approach is that your mock responses
must first be gathered and then subsequently updated each time the remote API changes.

Integration testing over the internet

You can perform integration testing with a web service over the internet by making calls directly to the service. If
the web service you are requesting uses a complex signing algorithm or some other specific implementation, then you
may want to include at least one actual network test that can be run specifically through the command line using
PHPUnit group annotations [http://www.phpunit.de/manual/current/en/appendixes.annotations.html#appendixes.annotations.group].

@group internet annotation

When creating tests that require an internet connection, it is recommended that you add @group internet annotations
to your unit tests to specify which tests require network connectivity.

You can then run PHPUnit tests [http://www.phpunit.de/manual/current/en/textui.html] that exclude the @internet
group by running phpunit --exclude-group internet.

API credentials

If API credentials are required to run your integration tests, you must add <php> parameters to your
phpunit.xml.dist file and extract these parameters in your bootstrap.php file.

<?xml version="1.0" encoding="UTF-8"?>
<phpunit bootstrap="./tests/bootstrap.php" colors="true">
 <php>
 <!-- Specify the path to a service configuration file -->
 <server name="CONFIG" value="test_services.json" />
 <!-- Or, specify each require parameter individually -->
 <server name="API_USER" value="change_me" />
 <server name="API_PASSWORD" value="****" />
 </php>
 <testsuites>
 <testsuite name="guzzle-service">
 <directory suffix="Test.php">./Tests</directory>
 </testsuite>
 </testsuites>
</phpunit>

You can then extract the server variables in your bootstrap.php file by grabbing them from the $_SERVER
superglobal: $apiUser = $_SERVER['API_USER'];

Further reading

A good discussion on the topic of testing remote APIs can be found in Sebastian Bergmann's
Real-World Solutions for Developing High-Quality PHP Frameworks and Applications [http://www.amazon.com/dp/0470872497].

Queueing Mock responses

Mock responses can be used to test if requests are being generated correctly and responses and handled correctly by
your client. Mock responses can be queued up for a client using the $this->setMockResponse($client, $path) method
of your test class. Pass the client you are adding mock responses to and a single path or array of paths to mock
response files relative to the /tests/mock/ folder. This will queue one or more mock responses for your client by
creating a simple observer on the client. Mock response files must contain a full HTTP response message:

HTTP/1.1 200 OK
Date: Wed, 25 Nov 2009 12:00:00 GMT
Connection: close
Server: AmazonS3
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<LocationConstraint xmlns="http://s3.amazonaws.com/doc/2006-03-01/">EU</LocationConstraint>

After queuing mock responses for a client, you can get an array of the requests that were sent by the client that
were issued a mock response by calling $this->getMockedRequests().

You can also use the Guzzle\Plugin\Mock\MockPlugin object directly with your clients.

$plugin = new Guzzle\Plugin\Mock\MockPlugin();
$plugin->addResponse(new Guzzle\Http\Message\Response(200));
$client = new Guzzle\Http\Client();
$client->addSubscriber($plugin);

// The following request will get the mock response from the plugin in FIFO order
$request = $client->get('http://www.test.com/');
$request->send();

// The MockPlugin maintains a list of requests that were mocked
$this->assertContainsOnly($request, $plugin->getReceivedRequests());

node.js web server for integration testing

Using mock responses is usually enough when testing a web service client. If your client needs to add custom cURL
options to requests, then you should use the node.js test web server to ensure that your HTTP request message is
being created correctly.

Guzzle is based around PHP's libcurl bindings. cURL sometimes modifies an HTTP request message based on
CURLOPT_* options. Headers that are added to your request by cURL will not be accounted for if you inject mock
responses into your tests. Additionally, some request entity bodies cannot be loaded by the client before transmitting
it to the sever (for example, when using a client as a sort of proxy and streaming content from a remote server). You
might also need to inspect the entity body of a multipart/form-data POST request.

Note

You can skip all of the tests that require the node.js test web server by excluding the server group:
phpunit --exclude-group server

Using the test server

The node.js test server receives requests and returns queued responses. The test server exposes a simple API that is
used to enqueue responses and inspect the requests that it has received.

Retrieve the server object by calling $this->getServer(). If the node.js server is not running, it will be
started as a forked process and an object that interfaces with the server will be returned. (note: stopping the
server is handled internally by Guzzle.)

You can queue an HTTP response or an array of responses by calling $this->getServer()->enqueue():

$this->getServer()->enqueue("HTTP/1.1 200 OK\r\nContent-Length: 0\r\n\r\n");

The above code queues a single 200 response with an empty body. Responses are queued using a FIFO order; this
response will be returned by the server when it receives the first request and then removed from the queue. If a
request is received by a server with no queued responses, an exception will be thrown in your unit test.

You can inspect the requests that the server has retrieved by calling $this->getServer()->getReceivedRequests().
This method accepts an optional $hydrate parameter that specifies if you are retrieving an array of string HTTP
requests or an array of Guzzle\Http\RequestInterface subclassed objects. "Hydrating" the requests will allow
greater flexibility in your unit tests so that you can easily assert the state of the various parts of a request.

You will need to modify the base_url of your web service client in order to use it against the test server.

$client = $this->getServiceBuilder()->get('my_client');
$client->setBaseUrl($this->getServer()->getUrl());

After running the above code, all calls made from the $client object will be sent to the test web server.

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Guzzle

Index

 Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		Guzzle »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Michael Dowling.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/guzzle-icon.png

_static/up.png

_static/plus.png

_static/logo.png
R
3, @
B

:

i
L8
Y
2
2w
e &

‘»:.P"
Rl
o

S

i

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

